714 research outputs found

    High Speed Phase-Resolved 2-d UBV Photometry of the Crab pulsar

    Get PDF
    We report a phase-resolved photometric and morphological analysis of UBV data of the Crab pulsar obtained with the 2-d TRIFFID high speed optical photometer mounted on the Russian 6m telescope. By being able to accurately isolate the pulsar from the nebular background at an unprecedented temporal resolution (1 \mu s), the various light curve components were accurately fluxed via phase-resolved photometry. Within the UBVUBV range, our datasets are consistent with the existing trends reported elsewhere in the literature. In terms of flux and phase duration, both the peak Full Width Half Maxima and Half Width Half Maxima decrease as a function of photon energy. This is similarly the case for the flux associated with the bridge of emission. Power-law fits to the various light curve components are as follows; \alpha = 0.07 \pm 0.19 (peak 1), \alpha = -0.06 \pm 0.19 (peak 2) and \alpha = -0.44 \pm 0.19 (bridge) - the uncertainty here being dominated by the integrated CCD photometry used to independently reference the TRIFFID data. Temporally, the main peaks are coincident to \le 10 \mu s although an accurate phase lag with respect to the radio main peak is compromised by radio timing uncertainties. The plateau on the Crab's main peak was definitively determined to be \leq 55 \mu s in extent and may decrease as a function of photon energy. There is no evidence for non-stochastic activity over the light curves or within various phase regions, nor is there evidence of anything akin to the giant pulses noted in the radio. Finally, there is no evidence to support the existence of a reported 60 second modulation suggested to be as a consequence of free precession.Comment: 13 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Fluctuations of the correlation dimension at metal-insulator transitions

    Get PDF
    We investigate numerically the inverse participation ratio, P2P_2, of the 3D Anderson model and of the power-law random banded matrix (PRBM) model at criticality. We found that the variance of lnP2\ln P_2 scales with system size LL as σ2(L)=σ2()ALD2/2d\sigma^2(L)=\sigma^2(\infty)-A L^{-D_2/2d}, being D2D_2 the correlation dimension and dd the system dimension. Therefore the concept of a correlation dimension is well defined in the two models considered. The 3D Anderson transition and the PRBM transition for b=0.3b=0.3 (see the text for the definition of bb) are fairly similar with respect to all critical magnitudes studied.Comment: RevTex, 5 pages, 4 eps figures, to be published in Phys. Rev. Let

    Ordered and periodic chaos of the bounded one dimensinal multibarrier potential

    Full text link
    Numerical analysis indicates that there exists an unexpected new ordered chaos for the bounded one-dimensional multibarrier potential. For certain values of the number of barriers, repeated identical forms (periods) of the wavepackets result upon passing through the multibarrier potential.Comment: 16 pages, 9 figures, 1 Table. Some former text removed and other introduce

    Larval therapy for leg ulcers (VenUS II) : randomised controlled trial

    Get PDF
    Objective To compare the clinical effectiveness of larval therapy with a standard debridement technique (hydrogel) for sloughy or necrotic leg ulcers. Design Pragmatic, three armed randomised controlled trial. Setting Community nurse led services, hospital wards, and hospital outpatient leg ulcer clinics in urban and rural settings, United Kingdom. Participants 267 patients with at least one venous or mixed venous and arterial ulcer with at least 25% coverage of slough or necrotic tissue, and an ankle brachial pressure index of 0.6 or more. Interventions Loose larvae, bagged larvae, and hydrogel. Main outcome measures The primary outcome was time to healing of the largest eligible ulcer. Secondary outcomes were time to debridement, health related quality of life (SF-12), bacterial load, presence of meticillin resistant Staphylococcus aureus, adverse events, and ulcer related pain (visual analogue scale, from 0 mm for no pain to 150 mm for worst pain imaginable). Results Time to healing was not significantly different between the loose or bagged larvae group and the hydrogel group (hazard ratio for healing using larvae v hydrogel 1.13, 95% confidence interval 0.76 to 1.68; P=0.54). Larval therapy significantly reduced the time to debridement (2.31, 1.65 to 3.2; P<0.001). Health related quality of life and change in bacterial load over time were not significantly different between the groups. 6.7% of participants had MRSA at baseline. No difference was found between larval therapy and hydrogel in their ability to eradicate MRSA by the end of the debridement phase (75% (9/12) v 50% (3/6); P=0.34), although this comparison was underpowered. Mean ulcer related pain scores were higher in either larvae group compared with hydrogel (mean difference in pain score: loose larvae v hydrogel 46.74 (95% confidence interval 32.44 to 61.04), P<0.001; bagged larvae v hydrogel 38.58 (23.46 to 53.70), P<0.001). Conclusions Larval therapy did not improve the rate of healing of sloughy or necrotic leg ulcers or reduce bacterial load compared with hydrogel but did significantly reduce the time to debridement and increase ulcer pain. Trial registration Current Controlled Trials ISRCTN55114812 and National Research Register N0484123692

    Accurate evaluation of the Green's function of disordered graphenes

    Full text link
    An accurate simulation of Green's function and self-energy function of non-interacting electrons in disordered graphenes are performed. Fundamental physical quantities such as the elastic relaxation time {\tau}e, the phase velocity vp, and the group velocity vg are evaluated. New features around the Dirac point are revealed, showing hints that multi-scattering induced hybridization of Bloch states plays an important role in the vicinity of the Dirac point.Comment: 4 figure

    Energy-level statistics at the metal-insulator transition in anisotropic systems

    Full text link
    We study the three-dimensional Anderson model of localization with anisotropic hopping, i.e. weakly coupled chains and weakly coupled planes. In our extensive numerical study we identify and characterize the metal-insulator transition using energy-level statistics. The values of the critical disorder WcW_c are consistent with results of previous studies, including the transfer-matrix method and multifractal analysis of the wave functions. WcW_c decreases from its isotropic value with a power law as a function of anisotropy. Using high accuracy data for large system sizes we estimate the critical exponent ν=1.45±0.2\nu=1.45\pm0.2. This is in agreement with its value in the isotropic case and in other models of the orthogonal universality class. The critical level statistics which is independent of the system size at the transition changes from its isotropic form towards the Poisson statistics with increasing anisotropy.Comment: 22 pages, including 8 figures, revtex few typos corrected, added journal referenc

    Ab Initio Calculation of Spin Gap Behavior in CaV4O9

    Full text link
    Second neighbor dominated exchange coupling in CaV4O9 has been obtained from ab initio density functional (DF) calculations. A DF-based self-consistent atomic deformation model reveals that the nearest neighbor coupling is small due to strong cancellation among the various superexchange processes. Exact diagonalization of the predicted Heisenberg model yields spin-gap behavior in good agreement with experiment. The model is refined by fitting to the experimental susceptibility. The resulting model agrees very well with the experimental susceptibility and triplet dispersion.Comment: 4 pages; 3 ps figures included in text; Revte

    Signatures of electron correlations in the transport properties of quantum dots

    Full text link
    The transition matrix elements between the correlated NN and N ⁣+ ⁣1N\!+\!1 electron states of a quantum dot are calculated by numerical diagonalization. They are the central ingredient for the linear and non--linear transport properties which we compute using a rate equation. The experimentally observed variations in the heights of the linear conductance peaks can be explained. The knowledge of the matrix elements as well as the stationary populations of the states allows to assign the features observed in the non--linear transport spectroscopy to certain transition and contains valuable information about the correlated electron states.Comment: 4 pages (revtex,27kB) + 3 figures in one file ziped and uuencoded (postscript,33kB), to appear in Phys.Rev.B as Rapid Communicatio

    Electronic structure of and Quantum size effect in III-V and II-VI semiconducting nanocrystals using a realistic tight binding approach

    Get PDF
    We analyze the electronic structure of group III-V semiconductors obtained within full potential linearized augmented plane wave (FP-LAPW) method and arrive at a realistic and minimal tight-binding model, parameterized to provide an accurate description of both valence and conduction bands. It is shown that cation sp3 - anion sp3d5 basis along with the next nearest neighbor model for hopping interactions is sufficient to describe the electronic structure of these systems over a wide energy range, obviating the use of any fictitious s* orbital, employed previously. Similar analyses were also performed for the II-VI semiconductors, using the more accurate FP-LAPW method compared to previous approaches, in order to enhance reliability of the parameter values. Using these parameters, we calculate the electronic structure of III-V and II-VI nanocrystals in real space with sizes ranging upto about 7 nm in diameter, establishing a quantitatively accurate description of the band-gap variation with sizes for the various nanocrystals by comparing with available experimental results from the literature.Comment: 28 pages, 8 figures, Accepted for publication in Phys. Rev.
    corecore