16,733 research outputs found

    Thin Ohmic or superconducting strip with an applied ac electric current

    Full text link
    The complex impedance, currents, and electric and magnetic fields are calculated as functions of resistivity and frequency or London depth for a long thin strip with applied ac current. Both Ohmic and superconducting strips are considered. While the inductance per unit length of the strip depends on the strip length logarithmically, the sheet current, magnetic field, resistance, and magnetic susceptibility are independent of this length. It is found that the enhancement of resistance by the skin effect in thin Ohmic strips is much weaker (logarithmic) than in thick wires.Comment: 4 pages, 3 figures, for Phys. Rev.

    Microscopic approach to pion-nucleus dynamics

    Get PDF
    Elastic scattering of pions from finite nuclei is investigated utilizing a contemporary, momentum--space first--order optical potential combined with microscopic estimates of second--order corrections. The calculation of the first--order potential includes:\ \ (1)~full Fermi--averaging integration including both the delta propagation and the intrinsic nonlocalities in the π\pi-NN amplitude, (2)~fully covariant kinematics, (3)~use of invariant amplitudes which do not contain kinematic singularities, and (4)~a finite--range off--shell pion--nucleon model which contains the nucleon pole term. The effect of the delta--nucleus interaction is included via the mean spectral--energy approximation. It is demonstrated that this produces a convergent perturbation theory in which the Pauli corrections (here treated as a second--order term) cancel remarkably against the pion true absorption terms. Parameter--free results, including the delta--nucleus shell--model potential, Pauli corrections, pion true absorption, and short--range correlations are presented. (2 figures available from authors)Comment: 13 page

    Acoustics of tachyon Fermi gas

    Full text link
    We consider a Fermi gas of free tachyons as a continuous medium and find whether it satisfies the causality condition. There is no stable tachyon matter with the particle density below critical value nTn_T and the Fermi momentum kF<32mk_F<\sqrt{\frac 32}m that depends on the tachyon mass mm. The pressure PP and energy density EE cannot be arbitrary small, but the situation P>EP>E is not forbidden. Existence of shock waves in tachyon gas is also discussed. At low density nT<n<3.45nTn_T<n<3.45n_T the tachyon matter remains stable but no shock wave do survive.Comment: 14 pages, 2 figures (color

    Shock waves in superconducting cosmic strings: growth of current

    Full text link
    Intrinsic equations of motion of superconducting cosmic string may admit solutions in the shock-wave form that implies discontinuity of the current term \chi. The hypersurface of discontinuity propagates at finite velocity determined by finite increment \Delta \chi =\chi_+ -\chi_-. The current increases \chi_+>\chi_- in stable shocks but transition between spacelike (\chi >0) and timelike (\chi<0) currents is impossible.Comment: 13 pages, 3 figure

    Quantum pattern recognition with liquid-state nuclear magnetic resonance

    Full text link
    A novel quantum pattern recognition scheme is presented, which combines the idea of a classic Hopfield neural network with adiabatic quantum computation. Both the input and the memorized patterns are represented by means of the problem Hamiltonian. In contrast to classic neural networks, the algorithm can return a quantum superposition of multiple recognized patterns. A proof of principle for the algorithm for two qubits is provided using a liquid state NMR quantum computer.Comment: updated version, Journal-ref adde

    Quantum Magnetic Properties in Perovskite with Anderson Localized Artificial Spin-1/2

    Get PDF
    Quantum magnetic properties in a geometrically frustrated lattice of spin-1/2 magnet, such as quantum spin liquid or solid and the associated spin fractionalization, are considered key in developing a new phase of matter. The feasibility of observing the quantum magnetic properties, usually found in geometrically frustrated lattice of spin-1/2 magnet, in a perovskite material with controlled disorder is demonstrated. It is found that the controlled chemical disorder, due to the chemical substitution of Ru ions by Co-ions, in a simple perovskite CaRuO3 creates a random prototype configuration of artificial spin-1/2 that forms dimer pairs between the nearest and further away ions. The localization of the Co impurity in the Ru matrix is analyzed using the Anderson localization formulation. The dimers of artificial spin-1/2, due to the localization of Co impurities, exhibit singlet-to-triplet excitation at low temperature without any ordered spin correlation. The localized gapped excitation evolves into a gapless quasi-continuum as dimer pairs break and create freely fluctuating fractionalized spins at high temperature. Together, these properties hint at a new quantum magnetic state with strong resemblance to the resonance valence bond system.Comment: 8 pages, 6 figure

    Numerical Evidence for Divergent Burnett Coefficients

    Full text link
    In previous papers [Phys. Rev. A {\bf 41}, 4501 (1990), Phys. Rev. E {\bf 18}, 3178 (1993)], simple equilibrium expressions were obtained for nonlinear Burnett coefficients. A preliminary calculation of a 32 particle Lennard-Jones fluid was presented in the previous paper. Now, sufficient resources have become available to address the question of whether nonlinear Burnett coefficients are finite for soft spheres. The hard sphere case is known to have infinite nonlinear Burnett coefficients (ie a nonanalytic constitutive relation) from mode coupling theory. This paper reports a molecular dynamics caclulation of the third order nonlinear Burnett coefficient of a Lennard-Jones fluid undergoing colour flow, which indicates that this term is diverges in the thermodynamic limit.Comment: 12 pages, 9 figure

    Interaction between ionic lattices and superconducting condensates

    Full text link
    The interaction of the ionic lattice with the superconducting condensate is treated in terms of the electrostatic force in superconductors. It is shown that this force is similar but not identical to the force suggested by the volume difference of the normal and superconducting states. The BCS theory shows larger deviations than the two-fluid model.Comment: 6 pages no figure

    Dynamics of Dissipative Quantum Hall Edges

    Get PDF
    We examine the influence of the edge electronic density profile and of dissipation on edge magnetoplasmons in the quantum Hall regime, in a semiclassical calculation. The equilibrium electron density on the edge, obtained using a Thomas-Fermi approach, has incompressible stripes produced by energy gaps responsible for the quantum Hall effect. We find that these stripes have an unobservably small effect on the edge magnetoplasmons. But dissipation, included phenomenologically in the local conductivity, proves to produce significant oscillations in the strength and speed of edge magnetoplasmons in the quantum Hall regime.Comment: 23 pages including 10 figure

    Borderline Aggregation Kinetics in ``Dry'' and ``Wet'' Environments

    Full text link
    We investigate the kinetics of constant-kernel aggregation which is augmented by either: (a) evaporation of monomers from finite-mass clusters, or (b) continuous cluster growth -- \ie, condensation. The rate equations for these two processes are analyzed using both exact and asymptotic methods. In aggregation-evaporation, if the evaporation is mass conserving, \ie, the monomers which evaporate remain in the system and continue to be reactive, the competition between evaporation and aggregation leads to several asymptotic outcomes. For weak evaporation, the kinetics is similar to that of aggregation with no evaporation, while equilibrium is quickly reached in the opposite case. At a critical evaporation rate, the cluster mass distribution decays as k5/2k^{-5/2}, where kk is the mass, while the typical cluster mass grows with time as t2/3t^{2/3}. In aggregation-condensation, we consider the process with a growth rate for clusters of mass kk, LkL_k, which is: (i) independent of kk, (ii) proportional to kk, and (iii) proportional to kμk^\mu, with 0<μ<10<\mu<1. In the first case, the mass distribution attains a conventional scaling form, but with the typical cluster mass growing as tlntt\ln t. When LkkL_k\propto k, the typical mass grows exponentially in time, while the mass distribution again scales. In the intermediate case of LkkμL_k\propto k^\mu, scaling generally applies, with the typical mass growing as t1/(1μ)t^{1/(1-\mu)}. We also give an exact solution for the linear growth model, LkkL_k\propto k, in one dimension.Comment: plain TeX, 17 pages, no figures, macro file prepende
    corecore