52 research outputs found
Prevalence and Distribution of Ranavirus in Amphibians From
Several infectious diseases are threatening amphibian species worldwide and have resulted in massmortality events across the globe. An emerging group of viral pathogens (ranaviruses) are documented to cause die-offs in amphibian populations worldwide, including in several regions of the U.S. Unfortunately, large gaps remain in our understanding of the distribution of this systemic pathogen in the U.S., including within the state of Oklahoma. To address this gap in our understanding, we carried out surveys of this infectious pathogen across 14 sites in seven southeastern Oklahoma counties in spring 2015, screening 17 amphibian species from this region. Using liver and tail tissue samples collected from individual amphibians, we screened for the presence and infection load of ranavirus. Of the 390 samples, 84 (21.5%) tested positive for ranavirus, with infection prevalence varying among species surveyed. Notably, the family Bufonidae had no samples that tested positive for ranavirus, whereas the remaining families had an infection prevalence ranging from 14–50%. Despite an overall infection prevalence of 21.5%, we detected no clinical signs of ranavirosis and all sampled individuals appeared outwardly healthy. These results provide data on the geographic and host distribution of ranavirus in southeastern Oklahoma, as well as the first documented cases of the pathogen in three species of anurans: Gastrophryne carolinensis (Eastern Narrow-mouthed Toad), G. olivacea (Western Narrow-mouthed Toad), and Pseudacris fouquettei (Cajun Chorus Frog). With widespread ranavirus infection, there is potential for transmission from abundant, widespread species to more vulnerable, state-threatened amphibians
G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces cerevisiae
G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs) across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs). Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint
Protocol for Application, Standardization and Validation of the Forskolin-Induced Swelling Assay in Cystic Fibrosis Human Colon Organoids
This protocol describes the isolation, handling, culture of, and experiments with human colon stem cell organoids in the context of cystic fibrosis (CF). In human colon organoids, the function of cystic fibrosis transmembrane conductance regulator (CFTR) protein and its rescue by CFTR modulators can be quantified using the forskolin-induced swelling assay. Implementation procedures and validation experiments are described for six CF human colon organoid lines, and representative CFTR genotypes are tested for basal CFTR function and response to CFTR-modulating drugs. For complete details on the use and execution of this protocol, please refer to Dekkers et al (2016) and Berkers and van Mourik (2019)
Measuring cystic fibrosis drug responses in organoids derived from 2D differentiated nasal epithelia
Cystic fibrosis is caused by genetic defects that impair the CFTR channel in airway epithelial cells. These defects may be overcome by specific CFTR modulating drugs, for which the efficacy can be predicted in a personalized manner using 3D nasal-brushing-derived airway organoids in a forskolin-induced swelling assay. Despite of this, previously described CFTR function assays in 3D airway organoids were not fully optimal, because of inefficient organoid differentiation and limited scalability. In this report, we therefore describe an alternative method of culturing nasal-brushing-derived airway organoids, which are created from an equally differentiated airway epithelial monolayer of a 2D air-liquid interface culture. In addition, we have defined organoid culture conditions, with the growth factor/cytokine combination neuregulin-1<i>β</i> and interleukin-1<i>β</i>, which enabled consistent detection of CFTR modulator responses in nasal-airway organoid cultures from subjects with cystic fibrosis
The Yeast Pif1 Helicase Prevents Genomic Instability Caused by G-Quadruplex-Forming CEB1 Sequences In Vivo
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Δ cells. Hence, we conclude that CEB1 instability in pif1Δ cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Abstract 20188: The Effect of Disclosing Genetic Risk for Coronary Heart Disease on Perceived Personal Control and Genetic Counseling Satisfaction: The MI-GENES Study
Background:
Perceived personal control (PPC) represents the belief that a person can alter his/her own situation or state. Higher PPC has been associated with increased health-related quality of life and helps facilitate healthy behavioral changes. We investigated whether disclosure of coronary heart disease (CHD) genetic risk influences PPC and genetic counseling satisfaction (GCS) in the myocardial infarction genes (MI-GENES) study, a randomized controlled trial of disclosing genetic risk of CHD.
Methods:
Participants (40-65 year-old, at intermediate 10-year CHD risk, and not on statins) were randomized to receive estimated 10-year risk of CHD based on their Framingham Risk Score (FRS) or FRS plus a 28 SNP genetic risk score (FRS*GRS). CHD risk was disclosed in each arm by a genetic counselor during a 30-minute scripted session that included a discussion of the impact of family history on CHD risk. For FRS*GRS participants, the genetic counselor also reviewed how their genetic risk score altered their FRS. Each participant then met with a physician to engage in shared-decision making regarding the need for statin therapy. Afterwards, study participants were asked to complete validated surveys to assess PPC and GCS. The 9-item PPC questionnaire was scored 0-9, with higher scores indicating greater control beliefs. The 5-item GCS questionnaire was scored 0-10, with greater scores indicating greater satisfaction with the disclosure session.
Results:
207 patients (mean age 58.8±5 years, 46.7% males) were randomized to receive either FRS or FRS*GRS. Patients randomized to receive FRS*GRS had higher PPC compared to FRS although the absolute difference was small (8.85±0.77 vs. 8.54±1.31, P=0.016). Patients randomized to receive FRS*GRS also had a higher GCS score than FRS patients (9.08±2.67 vs. 8.3±3.67, P=0.050].
Conclusions:
Disclosure of genetic risk for CHD did not adversely affect PPC or GCS. In fact, patients who received CHD genetic risk information had higher PPC and GCS. Our findings suggest that disclosure of CHD genetic risk is appreciated by patients and may empower them to improve health-related behaviors.
</jats:p
Conscious and Effortful or Effortless and Automatic: A Practice/Performance Paradox in Motor Learning
- …
