2,642 research outputs found
Crustal evolution inferred from Apollo magnetic measurements
Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments
The homestake surface-underground scintillations: Description
Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described
Few-body resonances of unequal-mass systems with infinite interspecies two-body s-wave scattering length
Two-component Fermi and Bose gases with infinitely large interspecies s-wave
scattering length exhibit a variety of intriguing properties. Among these
are the scale invariance of two-component Fermi gases with equal masses, and
the favorable scaling of Efimov features for two-component Bose gases and
Bose-Fermi mixtures with unequal masses. This paper builds on our earlier work
[D. Blume and K. M. Daily, arXiv:1006.5002] and presents a detailed discussion
of our studies of small unequal-mass two-component systems with infinite
in the regime where three-body Efimov physics is absent. We report on
non-universal few-body resonances. Just like with two-body systems on
resonance, few-body systems have a zero-energy bound state in free space and a
diverging generalized scattering length. Our calculations are performed within
a non-perturbative microscopic framework and investigate the energetics and
structural properties of small unequal-mass two-component systems as functions
of the mass ratio , and the numbers and of heavy and
light atoms. For purely attractive Gaussian two-body interactions, we find that
the and systems exhibit three-body and four-body
resonances at mass ratios and 10.4(2), respectively. The
three- and four-particle systems on resonance are found to be large. This
suggests that the corresponding wave function has relatively small overlap with
deeply-bound dimers, trimers or larger clusters and that the three- and
four-body systems on resonance have a comparatively long lifetime. Thus, it
seems feasible that the features discussed in this paper can be probed
experimentally with present-day technology.Comment: 17 pages, 17 figure
Approximate analysis and stability of pressure oscillations in ramjets
This paper summarizes work accomplished during the past five years on analysis of stability related to
recent experimental results on combustion instabilities in dump combustors. The primary purpose is to provide
the information in a form useful to those concerned with design and development of operational systems. Thus
most substantial details are omitted; the material is presented in a qualitative fashion
Fluorescence measurements of expanding strongly-coupled neutral plasmas
We report new detailed density profile measurements in expanding
strongly-coupled neutral plasmas. Using laser-induced fluorescence techniques,
we determine plasma densities in the range of 10^5 to 10^9/cm^3 with a time
resolution limit as small as 7 ns. Strong-coupling in the plasma ions is
inferred directly from the fluorescence signals. Evidence for strong-coupling
at late times is presented, confirming a recent theoretical result.Comment: submitted to PR
A Key and Annotations for Some Characeae Collected in Wyoming
A number of specimens of the Characeae collected by C. L. Porter and Marjorie Porter have been added to the Rocky Mountain Herbarium, University of Wyoming. Duplicates of these as well as the extant collections that were made available to the senior author for study. Distribution maps and ecological data were also supplied. A few collections from other sources were added
Discussion of "Test Characteristics of a Combined Pump-Turbine Model with Wicket Gates"
[no abstract
Invisibility in billiards
The question of invisibility for bodies with mirror surface is studied in the
framework of geometrical optics. We construct bodies that are invisible/have
zero resistance in two mutually orthogonal directions, and prove that there do
not exist bodies which are invisible/have zero resistance in all possible
directions of incidence
Molecular, phenotypic, and sample-associated data to describe pluripotent stem cell lines and derivatives
The use of induced pluripotent stem cells (iPSC) derived from independent patients and sources holds considerable promise to improve the understanding of development and disease. However, optimized use of iPSC depends on our ability to develop methods to efficiently qualify cell lines and protocols, monitor genetic stability, and evaluate self-renewal and differentiation potential. To accomplish these goals, 57 stem cell lines from 10 laboratories were differentiated to 7 different states, resulting in 248 analyzed samples. Cell lines were differentiated and characterized at a central laboratory using standardized cell culture methodologies, protocols, and metadata descriptors. Stem cell and derived differentiated lines were characterized using RNA-seq, miRNA-seq, copy number arrays, DNA methylation arrays, flow cytometry, and molecular histology. All materials, including raw data, metadata, analysis and processing code, and methodological and provenance documentation are publicly available for re-use and interactive exploration at https://www.synapse.org/pcbc. The goal is to provide data that can improve our ability to robustly and reproducibly use human pluripotent stem cells to understand development and disease
- …
