26 research outputs found
Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study
Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk
The science case of the FRS Ion Catcher for FAIR Phase-0
The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) at mass resolving powers of up to 410,000, with production cross sections down to the microbarn-level, and at rates down to a few ions per hour. The versatility of the MR-TOF-MS for isomer research has been demonstrated by the measurement of various isomers, determination of excitation energies and the production of a pure isomeric beam. Recently, several instrumental upgrades have been implemented at the FRS Ion Catcher. New experiments will be carried out during FAIR Phase-0 at GSI, including direct mass measurements of neutron-deficient nuclides below 100Sn and neutron-rich nuclides below 208Pb, measurement of β-delayed neutron emission probabilities and reaction studies with multi-nucleon transfer.Peer reviewe
Bearing capacity of pultrusion fiberglass gusset sheets in frame structures
Introduction. At present, design and construction of all-composite structures with the use of pultrusion fiberglass profiles (PFP) are developing. The bearing capacity of all-composite structures is often limited by their node connections. Over the last two decades, many studies have been devoted to the operation of fiber-reinforced polymer (FRP) element nodes connected at right angles (or in the direction of pultrusion and across it). Frame construction nodes are formed by adjoining frame elements at different angles to the bands through gusset sheets. In accordance with the literature analysis, a small number of tests have been carried out to investigate connections at angles to the pultrusion direction. Existing design solutions of gusset sheets in FRP frame structures are mainly made of steel or composite material produced using other technologies (compaction method, pressure treatment method). This study focuses on the implementation of a node connection on unidirectional gusset sheets in which the fibers are positioned at the angle of 0°. Taking into account the specific features of the material, the gusset sheet design in frame structures has been adapted to the properties of pultrusion fiberglass. The purpose of this study is to increase the efficiency of PFP gusset sheet use in frame structures based on the specifications of this material.
Materials and methods. The adaptive method was used when designing the node connection design on the frame structure gusset sheets. The material of the trapezoidal steel truss is changed to the composite material while retaining the original design solution. Subsequently, the structure is upgraded to take into account the properties and features of the composite material.
Results. The main results of the study involve determining the factor of safety of pultrusion fiberglass at different angles to the direction of force. In order to increase the bearing capacity of the element node connection, various gusset plate design solutions are provided, which take into account different forces in the frame structure elements.
Conclusions. When designing PFP constructions, features of the material must be taken into account. Replacing traditional materials with composite without adjusting the design layout and upgrading the structure leads to increased material intensity.</jats:p
