8,836 research outputs found
Bayesian Model Selection for Beta Autoregressive Processes
We deal with Bayesian inference for Beta autoregressive processes. We
restrict our attention to the class of conditionally linear processes. These
processes are particularly suitable for forecasting purposes, but are difficult
to estimate due to the constraints on the parameter space. We provide a full
Bayesian approach to the estimation and include the parameter restrictions in
the inference problem by a suitable specification of the prior distributions.
Moreover in a Bayesian framework parameter estimation and model choice can be
solved simultaneously. In particular we suggest a Markov-Chain Monte Carlo
(MCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm and
solve the model selection problem following a reversible jump MCMC approach
Pair-production of charged Dirac particles on charged Nariai and ultracold black hole manifolds
Spontaneous loss of charge by charged black holes by means of pair-creation
of charged Dirac particles is considered. We provide three examples of exact
calculations for the spontaneous discharge process for 4D charged black holes
by considering the process on three special non-rotating de Sitter black hole
backgrounds, which allow to bring back the problem to a Kaluza-Klein reduction.
Both the zeta-function approach and the transmission coefficient approach are
taken into account. A comparison between the two methods is also provided, as
well as a comparison with WKB results. In the case of non-zero temperature of
the geometric background, we also discuss thermal effects on the discharge
process.Comment: 27 page
E7 groups from octonionic magic square
In this paper we continue our program, started in [2], of building up
explicit generalized Euler angle parameterizations for all exceptional compact
Lie groups. Here we solve the problem for E7, by first providing explicit
matrix realizations of the Tits construction of a Magic Square product between
the exceptional octonionic algebra J and the quaternionic algebra H, both in
the adjoint and the 56 dimensional representations. Then, we provide the Euler
parametrization of E7 starting from its maximal subgroup U=(E6 x U(1))/Z3.
Next, we give the constructions for all the other maximal compact subgroups.Comment: 23 pages, added sections with new construction
Path integral quantization of the relativistic Hopfield model
The path integral quantization method is applied to a relativistically
covariant version of the Hopfield model, which represents a very interesting
mesoscopic framework for the description of the interaction between quantum
light and dielectric quantum matter, with particular reference to the context
of analogue gravity. In order to take into account the constraints occurring in
the model, we adopt the Faddeev-Jackiw approach to constrained quantization in
the path integral formalism. In particular we demonstrate that the propagator
obtained with the Faddeev-Jackiw approach is equivalent to the one which, in
the framework of Dirac canonical quantization for constrained systems, can be
directly computed as the vacuum expectation value of the time ordered product
of the fields. Our analysis also provides an explicit example of quantization
of the electromagnetic field in a covariant gauge and coupled with the
polarization field, which is a novel contribution to the literature on the
Faddeev-Jackiw procedure.Comment: 16 page
Dissecting Kinematics and Stellar Populations of Counter-Rotating Galaxies with 2-Dimensional Spectroscopy
We present a spectral decomposition technique and its applications to a
sample of galaxies hosting large-scale counter-rotating stellar disks. Our
spectral decomposition technique allows to separate and measure the kinematics
and the properties of the stellar populations of both the two counter-rotating
disks in the observed galaxies at the same time. Our results provide new
insights on the epoch and mechanism of formation of these galaxies.Comment: 4 pages, 3 figures. Contributed talk presented at the Conference
"Multi-Spin galaxies", September 30 - October 3, 2013, INAF-Astronomical
Observatory of Capodimonte, Naples, Italy. To be published in ASP Conf. Ser.,
Multi-Spin Galaxies, ed. E. Iodice & E. M. Corsini (San Francisco: ASP
Deep spectroscopy in nearby galaxy clusters: III Orbital structure of galaxies in Abell 85
Galaxies in clusters are strongly affected by their environment. They evolve
according to several physical mechanisms that are active in clusters. Their
efficiency can strongly depend on the orbital configuration of the galaxies.
Our aim is to analyse the orbits of the galaxies in the cluster Abell 85, based
on the study of the galaxy velocity anisotropy parameter. We have solved the
Jeans equation under the assumption that the galaxies in A85 are collisionless
objects, within the spherically symmetric gravitational potential of the
virialized cluster. The mass of the cluster was estimated with X-ray and
caustic analyses. We find that the anisotropy profile of the full galaxy
population in A85 is an increasing monotonic function of the distance from the
cluster centre: on average, galaxies in the central region (r/r200 < 0.3) are
on isotropic orbits, while galaxies in the outer regions are on radial orbits.
We also find that the orbital properties of the galaxies strongly depend on
their stellar colour. In particular, blue galaxies are on less radial orbits
than red galaxies. The different families of cluster galaxies considered here
have the pseudo phase-space density profiles Q(r) and Qr(r) consistent with the
profiles expected in virialized dark matter halos in -body simulations. This
result suggests that the galaxies in A85 have reached dynamical equilibrium
within the cluster potential. Our results indicate that the origin of the blue
and red colour of the different galaxy populations is the different orbital
shape rather than the accretion time.Comment: 15 pages, 15 figures. Accepted for publication at MNRA
Injunction Against Prosecution of Divorce Actions in Other States
Aims: The formation scenario of extended counter-rotating stellar disks in galaxies is still debated. In this paper, we study the S0 galaxy IC 719 known to host two large-scale counter-rotating stellar disks in order to investigate their formation mechanism.
Methods: We exploit the large field of view and wavelength coverage of the Multi Unit Spectroscopic Explorer (MUSE) spectrograph to derive two-dimensional (2D) maps of the various properties of the counter-rotating stellar disks, such as age, metallicity, kinematics, spatial distribution, the kinematical and chemical properties of the ionized gas, and the dust map.
Results: Due to the large wavelength range, and in particular to the presence of the Calcium Triplet \u3bb\u3bb8498, 8542, 8662 \uc5 (CaT hereafter), the spectroscopic analysis allows us to separate the two stellar components in great detail. This permits precise measurement of both the velocity and velocity dispersion of the two components as well as their spatial distribution. We derived a 2D map of the age and metallicity of the two stellar components, as well as the star formation rate and gas-phase metallicity from the ionized gas emission maps.
Conclusions: The main stellar disk of the galaxy is kinematically hotter, older, thicker and with larger scale-length than the secondary disk. There is no doubt that the latter is strongly linked to the ionized gas component: they have the same kinematics and similar vertical and radial spatial distribution. This result is in favor of a gas accretion scenario over a binary merger scenario to explain the origin of counter-rotation in IC 719. One source of gas that may have contributed to the accretion process is the cloud that surrounds IC 719
- …
