9,963 research outputs found
Non-equilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent Born approximation
We study the effect of electron-vibron interactions on the inelastic
transport properties of single-molecule nanojunctions. We use the
non-equilibrium Green's functions technique and a model Hamiltonian to
calculate the effects of second-order diagrams (double-exchange DX and
dressed-phonon DPH diagrams) on the electron-vibration interaction and consider
their effects across the full range of parameter space. The DX diagram,
corresponding to a vertex correction, introduces an effective dynamical
renormalization of the electron-vibron coupling in both the purely inelastic
and the inelastic-resonant features of the IETS. The purely inelastic features
correspond to an applied bias around the energy of a vibron, while the
inelastic-resonant features correspond to peaks (resonance) in the conductance.
The DPH diagram affects only the inelastic resonant features. We also discuss
the circumstances in which the second-order diagrams may be approximated in the
study of more complex model systems.Comment: To be published in PR
Pilot's Automated Weather Support System (PAWSS) concepts demonstration project. Phase 1: Pilot's weather information requirements and implications for weather data systems design
The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described
Functionality in single-molecule devices: Model calculations and applications of the inelastic electron tunneling signal in molecular junctions
We analyze how functionality could be obtained within single-molecule devices
by using a combination of non-equilibrium Green's functions and ab-initio
calculations to study the inelastic transport properties of single-molecule
junctions. First we apply a full non-equilibrium Green's function technique to
a model system with electron-vibration coupling. We show that the features in
the inelastic electron tunneling spectra (IETS) of the molecular junctions are
virtually independent of the nature of the molecule-lead contacts. Since the
contacts are not easily reproducible from one device to another, this is a very
useful property. The IETS signal is much more robust versus modifications at
the contacts and hence can be used to build functional nanodevices. Second, we
consider a realistic model of a organic conjugated molecule. We use ab-initio
calculations to study how the vibronic properties of the molecule can be
controlled by an external electric field which acts as a gate voltage. The
control, through the gate voltage, of the vibron frequencies and (more
importantly) of the electron-vibron coupling enables the construction of
functionality: non-linear amplification and/or switching is obtained from the
IETS signal within a single-molecule device.Comment: Accepted for publication in Journal of Chemical Physic
The ART of IAM: The Winning Strategy for the 2006 Competition
In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)
The ART of IAM: The Winning Strategy for the 2006 Competition
In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)
- …
