446 research outputs found
Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data
This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances
High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures
High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation
Recommended from our members
Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis.
Epidural electrical stimulation (EES) of the spinal cord has been shown to restore function after spinal cord injury (SCI). Characterization of EES-evoked motor responses has provided a basic understanding of spinal sensorimotor network activity related to EES-enabled motor activity of the lower extremities. However, the use of EES-evoked motor responses to guide EES system implantation over the spinal cord and their relation to post-operative EES-enabled function in humans with chronic paralysis attributed to SCI has yet to be described. Herein, we describe the surgical and intraoperative electrophysiological approach used, followed by initial EES-enabled results observed in 2 human subjects with motor complete paralysis who were enrolled in a clinical trial investigating the use of EES to enable motor functions after SCI. The 16-contact electrode array was initially positioned under fluoroscopic guidance. Then, EES-evoked motor responses were recorded from select leg muscles and displayed in real time to determine electrode array proximity to spinal cord regions associated with motor activity of the lower extremities. Acceptable array positioning was determined based on achievement of selective proximal or distal leg muscle activity, as well as bilateral muscle activation. Motor response latencies were not significantly different between intraoperative recordings and post-operative recordings, indicating that array positioning remained stable. Additionally, EES enabled intentional control of step-like activity in both subjects within the first 5 days of testing. These results suggest that the use of EES-evoked motor responses may guide intraoperative positioning of epidural electrodes to target spinal cord circuitry to enable motor functions after SCI
Multifunctional nanoparticles for drug/gene delivery in nanomedicine
Multifunctional nanoparticles hold great promise for drug/gene delivery. Multilayered nanoparticles can act as nanomedical systems with on-board "molecular programming" to accomplish complex multi-step tasks. For example, the targeting process has only begun when the nanosystem has found the correct diseased cell of interest. Then it must pass the cell membrane and avoid enzymatic destruction within the endosomes of the cell. Since the nanosystem is only about one millionth the volume of a human cell, for it to have therapeutic efficacy with its contained package, it must deliver that drug or gene to the appropriate site within the living cell. The successive delayering of these nanosystems in a controlled fashion allows the system to accomplish operations that would be difficult or impossible to do with even complex single molecules. In addition, portions of the nanosystem may be protected from premature degradation or mistargeting to non-diseased cells. All of these problems remain major obstacles to successful drug delivery with a minimum of deleterious side effects to the patient. This paper describes some of the many components involved in the design of a general platform technology for nanomedical systems. The feasibility of most of these components has been demonstrated by our group and others. But the integration of these interacting sub-components remains a challenge. We highlight four components of this process as examples. Each subcomponent has its own sublevels of complexity. But good nanomedical systems have to be designed/engineered as a full nanomedical system, recognizing the need for the other components
Lack of association between genetic markers on chromosome 16q22-Q24 and type 1 diabetes in Russian affected families
Aim To evaluate whether the T1D susceptibility locus on chromosome 16q contributes to the genetic susceptibility to T1D in Russian patients. Method Thirteen microsatellite markers, spanning a 47-centimorgan genomic region on 16q22-q24 were evaluated for linkage to T1D in 98 Russian multiplex families. Multipoint logarithm of odds (LOD) ratio (MLS) and nonparametric LOD (NPL) values were computed for each marker, using GENEHUNTER 2.1 software. Four microsatellites (D16S422, D16S504, D16S3037, and D16S3098) and 6 biallelic markers in 2 positional candidate genes, ICSBP1 and NQO1, were additionally tested for association with T1D in 114 simplex families, using transmission disequilibrium test (TDT). Results A peak of linkage (MLS = 1.35, NPL = 0.91) was shown for marker D16S750, but this was not significant (P = 0.18). The subsequent linkage analysis in the subset of 46 multiplex families carrying a common risk HLA-DR4 haplotype increased peak MLS and NPL values to 1.77 and 1.22, respectively, but showed no significant linkage (P = 0.11) to T1D in the 16q22-q24 genomic region. TDT analysis failed to find significant association between these markers and disease, even after the conditioning for the predisposing HLA-DR4 haplotype. Conclusion Our results did not support the evidence for the susceptibility locus to T1D on chromosome 16q22-24 in the Russian family data set. The lack of association could reflect genetic heterogeneity of type 1 diabetes in diverse ethnic groups
ZION: A Scalable W3C Web of Things Directory
The proliferation of non-interoperable smart objects within the Internet of Things (IoT) has led to a fragmented and heterogeneous landscape. The Web of Things (WoT), particularly the W3C WoT, has emerged as a promising solution to this challenge, enabling seamless integration across IoT platforms and domains by extending known web standards. This paper introduces Zion, an open-source scalable W3C Thing Description Directory (TDD) designed to efficiently address the indexing and querying of Thing Descriptions (TDs) and the associated Web Things (WTs). Zion offers a standard API for performing CRUDL operations while supporting metadata querying through JSONPath. We further demonstrate its practical utility through real-world deployments, applying Zion to Structural Health Monitoring (SHM) and integrating it with IoT devices alongside blockchain technology. Comparative analysis with the other TDD implementations complying with the W3C standards - e.g., WoT Hive and TinyIoT - demonstrates that Zion outperforms both. It exhibits response times approximately ten times lower than those observed in the compared TDDs under high workloads
Recommended from our members
Seasonal variability of atmospheric tides in the mesosphere and lower thermosphere: Meteor radar data and simulations
Thermal tides play an important role in the global atmospheric dynamics and provide a key mechanism for the forcing of thermosphere–ionosphere dynamics from below. A method for extracting tidal contributions, based on the adaptive filtering, is applied to analyse multi-year observations of mesospheric winds from ground-based meteor radars located in northern Germany and Norway. The observed seasonal variability of tides is compared to simulations with the Kühlungsborn Mechanistic Circulation Model (KMCM). It is demonstrated that the model provides reasonable representation of the tidal amplitudes, though substantial differences from observations are also noticed. The limitations of applying a conventionally coarse-resolution model in combination with parametrisation of gravity waves are discussed. The work is aimed towards the development of an ionospheric model driven by the dynamics of the KMCM
Mental health needs and services in the West Bank, Palestine
Background
Palestine is a low income country with scarce resources, which is seeking independence. This paper discusses the high levels of mental health need found amongst Palestinian people, and examines services, education and research in this area with particular attention paid to the West Bank.
Methods
CINAHL, PubMed, and Science Direct were used to search for materials.
Results and conclusion
Evidence from this review is that there is a necessity to increase the availability and quality of mental health care. Mental health policy and services in Palestine need development in order to better meet the needs of service users and professionals. It is essential to raise awareness of mental health and increase the integration of mental health services with other areas of health care. Civilians need their basic human needs met, including having freedom of movement and seeing an end to the occupation. There is a need to enhance the resilience and capacity of community mental health teams. There is a need to increase resources and offer more support, up-to-date training and supervision to mental health teams
Okazaki Fragment Maturation in Yeast -1. Distribution of functions between FEN1 AND DNA2
In the presence of proliferating cell nuclear antigen, yeast DNA polymerase delta (Pol delta) replicated DNA at a rate of 40-60 nt/s. When downstream double-stranded DNA was encountered, Pol delta paused, but most replication complexes proceeded to carry out strand-displacement synthesis at a rate of 1.5 nt/s. In the presence of the flap endonuclease FEN1 (Rad27), the complex carried out nick translation (1.7 nt/s). The Dna2 nuclease/helicase alone did not efficiently promote nick translation, nor did it affect nick translation with FEN1. Maturation in the presence of DNA ligase was studied with various downstream primers. Downstream DNA primers, RNA primers, and small 5\u27-flaps were efficiently matured by Pol delta and FEN1, and Dna2 did not stimulate maturation. However, maturation of long 5\u27-flaps to which replication protein A can bind required both DNA2 and FEN1. The maturation kinetics were optimal with a slight molar excess over DNA of Pol delta, FEN1, and proliferating cell nuclear antigen. A large molar excess of DNA ligase substantially enhanced the rate of maturation and shortened the nick-translation patch (nucleotides excised past the RNA/DNA junction before ligation) to 4-6 nt from 8-12 nt with equimolar ligase. These results suggest that FEN1, but not DNA ligase, is a stable component of the maturation complex
Ecology and application of haloalkaliphilic anaerobic microbial communities
Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided.This work was performed in the TTIW-
cooperation framework of Wetsus, European Centre of Excel-
lence for Sustainable Water Technology (www.wetsus.nl).
Wetsus is funded by the Dutch Ministry of Economic
Affairs, the European Union Regional Development Fund,
the Province of Fryslân, the City of Leeuwarden and the EZ/Kompas program of the“
Samenwerkingsverband Noord-Nederland”. The authors would like to thank the participants of
the research theme "Sulfur", namely Paqell, for fruitful discussions and financial suppor
- …
