39 research outputs found

    Enhancing Hygrothermal Performance in Multi-Zone Constructions through Phase Change Material Integration

    Get PDF
    \ua9 2024, Tech Science Press. All rights reserved.As buildings evolve to meet the challenges of energy efficiency and indoor comfort, phase change materials (PCM) emerge as a promising solution due to their ability to store and release latent heat. This paper explores the transformative impact of incorporating PCM on the hygrothermal dynamics of multi-zone constructions. The study focuses on analyzing heat transfer, particularly through thermal conduction, in a wall containing PCM. A novel approach was proposed, wherein the studied system (sensitive balance) interacts directly with a latent balance to realistically define the behavior of specific humidity and mass flow rates. In addition, a numerical model implemented in MATLAB software has been developed to investigate the effect of integrating PCM on the hygrothermal balances inside the building. The obtained results indicate a consistent response in internal temperatures, specific humidity, and mass flow rates, with temperature differences ranging from 5\ub0C to 13\ub0C and a maximum phase shift of 13 h. In addition, the findings provided valuable insights into optimizing the design and performance of multi-zone constructions, offering a sustainable pathway for enhancing building resilience and occupant well-being

    The Use of Double-Skin Façades to Improve the Energy Consumption of High-Rise Office Buildings in a Mediterranean Climate (Csa)

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordEngineers use double-skin façades (DSF) to lower the energy consumption of buildings as they can potentially control incoming wind speeds and the amount of solar heat gain. The purpose of this present study was to (1) evaluate the use of DSFs, (2) its efficacy in improving the energy performance of high-rise office buildings in the hot, dry summer climate of the Mediterranean, and (3) to develop an optimum DSF model for this climate based on industry standards and recommen-dations for high-performance DSF parameters. In order to determine the efficiency of DSFs, two distinct variables, building orientation and the number of DSFs used, were taken into consideration. This study adopted an experimental (generate and test) research design and used Autodesk® Eco-tect® Analysis software to develop computer simulations with which to assess 15 single façades, juxtaposed façades, three façades, and four façades on cardinal orientations. The recorded energy consumption and savings were then compared with that of the reference model. The results indi-cated that the three DSF model, i.e., the S14 model, reduced energy consumption during heating by 28% and by 53.5% when cooling a high-rise office building located in the hot, dry summer climate of the Mediterranean (Csa).University of Ha’il, Saudi Arabi

    Pure seminoma: A review and update

    Get PDF
    Pure seminoma is a rare pathology of the young adult, often discovered in the early stages. Its prognosis is generally excellent and many therapeutic options are available, especially in stage I tumors. High cure rates can be achieved in several ways: standard treatment with radiotherapy is challenged by surveillance and chemotherapy. Toxicity issues and the patients' preferences should be considered when management decisions are made. This paper describes firstly the management of primary seminoma and its nodal involvement and, secondly, the various therapeutic options according to stage

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Heterogeneous photo-Fenton oxidation with natural clays for phenol and tyrosol remediation

    No full text
    Due to their excellent properties, clays have been widely used in several applications, particularly in catalysis. In this paper, three clays were used as heterogeneous photo-Fenton catalysts for phenol and tyrosol oxidations. Particular attention was given to the effect of the main operating conditions on the process performance. A total conversion was obtained for both organic pollutants with studied catalysts in 20 minutes reaction. For phenol, a total organic carbon (TOC) conversion of 93% was obtained using sieved and calcined smectite clay. The TOC conversion was 60% for tyrosol with the same catalyst. Clays were characterized by chemical analysis, BET, XRD, TPR and SEM
    corecore