411 research outputs found
Recommended from our members
Association between egg consumption and cardiovascular disease events, diabetes and all-cause mortality
Purpose The association between egg consumption and
cardiovascular disease (CVD) or type 2 diabetes (T2D)
remains controversial. We investigated the association
between egg consumption and risk of CVD (primary outcome),
T2D and mortality in the Caerphilly prospective
cohort study (CAPS) and National Diet and Nutritional
Survey (NDNS).
Methods CAPS included 2512 men aged 45–59 years
(1979–1983). Dietary intake, disease incidence and mortality
were updated at 5-year intervals. NDNS included 754
adults aged 19–64 years from 2008 to 2012.
Results Men free of CVD (n = 1781) were followed up for
a mean of 22.8 years, egg consumption was not associated
with new incidence of CVD (n = 715), mortality (n = 1028)
or T2D (n = 120). When stroke (n = 248), MI (n = 477),heart failure (n = 201) were investigated separately, no
associations between egg consumption and stroke and MI
were identified, however, increased risk of stroke in subjects
with T2D and/or impaired glucose tolerance (IGT, fasting
plasma glucose ≥ 6.1 mmol/L), adjusted hazard ratios (95%
CI) were 1.0 (reference), 1.09 (0.41, 2.88), 0.96 (0.37, 2.50),
1.39 (0.54, 3.56) and 2.87 (1.13, 7.27) for egg intake (n) of
0 ≤ n ≤ 1, 1 < n ≤ 2, 2 < n ≤ 3, 3 < n < 5, and n ≥ 5 eggs/wk,
respectively (P = 0.01). In addition, cross-sectional analyses
revealed that higher egg consumption was significantly
associated with elevated fasting glucose in those with T2D
and/or IGT (CAPS: baseline P = 0.02 and 5-year P = 0.04;
NDNS: P = 0.05).
Conclusions Higher egg consumption was associated with
higher blood glucose in subjects with T2D and/or IGT. The
increased incidence of stroke with higher egg consumption
among T2D and/or IGT sub-group warrants further
investigation
Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.
OBJECTIVE: Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS: Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS: Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS: Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations
Genetic loci associated with plasma phospholipid N-3 fatty acids: A Meta-Analysis of Genome-Wide association studies from the charge consortium
Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3×10-64) and lower levels of eicosapentaenoic acid (EPA, p = 5×10-58) and docosapentaenoic acid (DPA, p = 4×10-154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2×10-12) and DPA (p = 1×10-43) and lower docosahexaenoic acid (DHA, p = 1×10-15). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1×10-8). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries
Simple methodology for the quantitative analysis of fatty acids in human red blood cells
In the last years, there has been an increasing
interest in evaluating possible relations between fatty acid
(FA) patterns and the risk for chronic diseases. Due to the
long life span (120 days) of red blood cells (RBCs), their
FA profile reflects a longer term dietary intake and was
recently suggested to be used as an appropriate biomarker
to investigate correlations between FA metabolism and diseases.
Therefore, the aim of this work was to develop and
validate a simple and fast methodology for the quantification
of a broad range of FAs in RBCs using gas chromatography
with flame ionization detector, as a more common
and affordable equipment suitable for biomedical and
nutritional studies including a large number of samples. For
this purpose, different sample preparation protocols were
tested and compared, including a classic two-step method
(Folch method) with modifications and different one-step methods, in which lipid extraction and derivatization were
performed simultaneously. For the one-step methods, different
methylation periods and the inclusion of a saponification
reaction were evaluated. Differences in absolute FA
concentrations were observed among the tested methods,
in particular for some metabolically relevant FAs such as
trans elaidic acid and eicosapentaenoic acid. The one-step
method with saponification and 60 min of methylation time
was selected since it allowed the identification of a higher
number of FAs, and was further submitted to in-house validation.
The proposed methodology provides a simple, fast
and accurate tool to quantitatively analyse FAs in human
RBCs, useful for clinical and nutritional studies.This work received financial support from the
European Union (FEDER funds through COMPETE) and National
Funds (FCT, Fundação para a Ciência e Tecnologia) through project
PTDC/SAU-ENB/116929/2010 and EXPL/EMS-SIS/2215/2013.
ROR acknowledges PhD scholarship SFRH/BD/97658/2013 attributed
by FCT (Fundação para a Ciência e Tecnologia).info:eu-repo/semantics/publishedVersio
Egg Consumption and Risk of Type 2 Diabetes in Men and Women
OBJECTIVE—Whereas limited and inconsistent findings have been reported on the relation between dietary cholesterol or egg consumption and fasting glucose, no previous study has examined the association between egg consumption and type 2 diabetes. This project sought to examine the relation between egg intake and the risk of type 2 diabetes in two large prospective cohorts
HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington’s Disease
Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu.CHDI Foundation [A-2666]; Portuguese Fundacao para a Ciencia e a Tecnologia [SFRH/BPD/70718/2010, SFRH/BPD/96890/2013, IF/00881/2013, UID/BIM/04773/2013 - CBMR, UID/Multi/04326/2013 - CCMAR]info:eu-repo/semantics/publishedVersio
Genome-wide association meta-analysis of fish and EPA plus DHA consumption in 17 US and European cohorts
Background Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences. Objective To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption. Design We conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts. Results Heritability estimates for fish and EPA+DHA consumption ranged from 0.13-0.24 and 0.12-0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (Freq(A) = 0.015) was associated with 0.029 servings/day (similar to 1 serving/month) lower fish consumption (P = 1.96x10(-8)). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10(-7)). Post-hoc calculations demonstrated 95% statistical power to detect a genetic variant associated with effect size of 0.05% for fish and 0.08% for EPA+DHA. Conclusions These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.Peer reviewe
Glutathione S-Transferase Ω 1 variation does not influence age at onset of Huntington's disease
BACKGROUND: Huntington's disease (HD) is a fully penetrant, autosomal dominantly inherited disorder associated with abnormal expansions of a stretch of perfect CAG repeats in the 5' part of the IT15 gene. The number of repeat units is highly predictive for the age at onset (AO) of the disorder. But AO is only modestly correlated with repeat length when intermediate HD expansions are considered. Circumstantial evidence suggests that additional features of the HD course are based on genetic traits. Therefore, it may be possible to investigate the genetic background of HD, i.e. to map the loci underlying the development and progression of the disease. Recently an association of Glutathione S-Transferase Ω 1 (GSTO1) and possibly of GSTO2 with AO was demonstrated for, both, Alzheimer's (AD) and Parkinson's disease (PD). METHODS: We have genotyped the polymorphisms rs4925 GSTO1 and rs2297235 GSTO2 in 232 patients with HD and 228 controls. RESULTS: After genotyping GSTO1 and GSTO2 polymorphisms, firstly there was no statistically significant difference in AO for HD patients, as well as secondly for HD patients vs. controls concerning, both, genotype and allele frequencies, respectively. CONCLUSION: The GSTO1 and GSTO2 genes flanked by the investigated polymorphisms are not comprised in a primary candidate region influencing AO in HD
Nut consumption and risk of atrial fibrillation in the Physicians' Health Study
<p>Abstract</p> <p>Background</p> <p>Atrial Fibrillation is highly prevalent in clinical practice affecting approximately 2.3 million people in USA and 4.5 million people in European Union. The aim of the study was to examine the association between nut consumption and incident atrial fibrillation.</p> <p>Methods</p> <p>Prospective cohort of 21,054 male participants of Physicians' Health Study I. Nut consumption was estimated using food frequency questionnaire and incident atrial fibrillation was ascertained through yearly follow-up questionnaires. Cox regression was used to estimate relative risks of atrial fibrillation.</p> <p>Results</p> <p>The average age was 54.6 ± 9.5 years (40.7-87.1). During a mean follow up of 20 years (median 24 years), 3,317 cases of atrial fibrillation occurred. The crude incidence rate was 7.6, 7.4, 8.2, 7.9, and 6.8 cases/1000 person-years for people reporting nut consumption of rarely/never, 1-3/month, 1/per week, 2-6/week, and ≥ 7/week, respectively. Multivariable adjusted hazard ratios (95% CI) for incident atrial fibrillation were 1.00 (ref), 1.00 (0.90-1.11), 1.09 (0.97-1.21), 1.07 (0.95-1.21), and 0.91 (0.70-1.17) for nut consumption from the lowest to the highest category of nut consumption (p for trend 0.26). No statistically significant association between nut consumption and atrial fibrillation was found when stratified by body mass index (BMI < 25 vs ≥ 25 kg/m<sup>2</sup>) or age (< 65 vs. ≥ 65 years).</p> <p>Conclusions</p> <p>Our data did not show an association between nut consumption and incident atrial fibrillation among US male physicians.</p
Daily egg consumption in hyperlipidemic adults - Effects on endothelial function and cardiovascular risk
<p>Abstract</p> <p>Background</p> <p>Limiting consumption of eggs, which are high in cholesterol, is generally recommended to reduce risk of cardiovascular disease. However, recent evidence suggests that dietary cholesterol has limited influence on serum cholesterol or cardiac risk.</p> <p>Objective</p> <p>To assess the effects of egg consumption on endothelial function and serum lipids in hyperlipidemic adults.</p> <p>Methods</p> <p>Randomized, placebo-controlled crossover trial of 40 hyperlipidemic adults (24 women, 16 men; average age = 59.9 ± 9.6 years; weight = 76.3 ± 21.8 kilograms; total cholesterol = 244 ± 24 mg/dL). In the acute phase, participants were randomly assigned to one of the two sequences of a single dose of three medium hardboiled eggs and a sausage/cheese breakfast sandwich. In the sustained phase, participants were then randomly assigned to one of the two sequences of two medium hardboiled eggs and 1/2 cup of egg substitute daily for six weeks. Each treatment assignment was separated by a four-week washout period. Outcome measures of interest were endothelial function measured as flow mediated dilatation (FMD) and lipid panel.</p> <p>Results</p> <p>Single dose egg consumption had no effects on endothelial function as compared to sausage/cheese (0.4 ± 1.9 vs. 0.4 ± 2.4%; <it>p </it>= 0.99). Daily consumption of egg substitute for 6 weeks significantly improved endothelial function as compared to egg (1.0 ± 1.2% vs. -0.1 ± 1.5%; <it>p </it>< 0.01) and lowered serum total cholesterol (-18 ± 18 vs. -5 ± 21 mg/dL; <it>p </it>< 0.01) and LDL (-14 ± 20 vs. -2 ± 19 mg/dL; <it>p </it>= 0.01). Study results (positive or negative) are expressed in terms of change relative to baseline.</p> <p>Conclusions</p> <p>Egg consumption was found to be non-detrimental to endothelial function and serum lipids in hyperlipidemic adults, while egg substitute consumption was beneficial.</p
- …
