2,793 research outputs found
Ensuring Treatment Fidelity in a Multi-site Behavioral Intervention Study: Implementing NIH Behavior Change Consortium Recommendations in the SMART Trial
The Stories and Music for Adolescent/Young Adult Resilience during Transplant (SMART) study (R01NR008583; U10CA098543; U10CA095861) is an ongoing multi-site Children’s Oncology Group randomized clinical trial testing the efficacy of a therapeutic music video intervention for adolescents/young adults (11–24 years of age) with cancer undergoing stem cell transplant. Treatment fidelity strategies from our trial are consistent with the NIH Behavior Change Consortium Treatment Fidelity Workgroup (BCC) recommendations and provide a successful working model for treatment fidelity implementation in a large, multi-site behavioral intervention study. In this paper we summarize 20 specific treatment fidelity strategies used in the SMART trial and how these strategies correspond with NIH BCC recommendations in 5 specific areas: 1) study design, 2) training providers, 3) delivery of treatment, 4) receipt of treatment, and 5) enactment of treatment skills. Increased use and reporting of treatment fidelity procedures is essential in advancing the reliability and validity of behavioral intervention research. The SMART trial provides a strong model for the application of fidelity strategies to improve scientific findings and addresses the absence of published literature illustrating the application of BCC recommendations in behavioral intervention studies
Inhibition of activin/nodal signalling is necessary for pancreatic differentiation of human pluripotent stem cells
Peer reviewedPublisher PD
Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California
In this paper we report chemically resolved measurements
of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In
situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local
methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by
ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (<1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NO_x enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site
The transformation of transport policy in Great Britain? 'New Realism' and New Labour's decade of displacement activity
In a 1999 paper, Goodwin announced ‘the transformation of transport policy in Great Britain’. His central point was that consensus was emerging among policy makers and academics based on earlier work including Transport: The New Realism, which rejected previous orthodoxy that the supply of road space could and should be continually expanded to match demand. Instead a combination of investment in public transport, walking and cycling opportunities and – crucially – demand management should form the basis of transport policy to address rising vehicle use and associated increases in congestion and pollution / carbon emissions. This thinking formed the basis of the 1997 Labour government’s ‘sustainable transport’ policy, but after 13 years in power ministers neither transformed policy nor tackled longstanding transport trends. Our main aim in this paper is to revisit the concept of New Realism and re-examine its potential utility as an agent of change in British transport policy. Notwithstanding the outcome of Labour’s approach to transport policy, we find that the central tenets of the New Realism remain robust and that the main barriers to change are related to broader political and governance issues which suppress radical policy innovation
Apportionment of primary and secondary organic aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1)
Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionment techniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each of these methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70−90% were observed during midday periods, whereas minimum SOA contributions of ~45% were observed during peak morning traffic periods. These results are contrary to previous estimates of SOA throughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed
The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties
International audienceThe relationship between cloud condensation nuclei (CCN) number and the physical and chemical properties of the atmospheric aerosol distribution is explored for a polluted urban data set from the Study of Organic Aerosols at Riverside I (SOAR-1) campaign conducted at Riverside, California, USA during summer 2005. The mixing state and, to a lesser degree, the average chemical composition are shown to be important parameters in determining the activation properties of those particles around the critical activation diameters for atmospherically-realistic supersaturation values. Closure between predictions and measurements of CCN number at several supersaturations is attempted by modeling a number of aerosol chemical composition and mixing state schemes of increasing complexity. It is shown that a realistic treatment of the state of mixing of the urban aerosol distribution is critical in order to eliminate model bias. Fresh emissions such as elemental carbon and small organic particles must be treated as non-activating and explicitly accounted for in the model scheme. The relative number concentration of these particles compared to inorganics and oxygenated organic compounds of limited hygroscopicity plays an important role in determining the CCN number. Furthermore, expanding the different composition/mixing state schemes to predictions of cloud droplet number concentration in a cloud parcel model highlights the dependence of cloud optical properties on the state of mixing and hygroscopic properties of the different aerosol modes, but shows that the relative differences between the different schemes are reduced compared to those from the CCN model
Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene
For most optoelectronic applications of graphene a thorough understanding of
the processes that govern energy relaxation of photoexcited carriers is
essential. The ultrafast energy relaxation in graphene occurs through two
competing pathways: carrier-carrier scattering -- creating an elevated carrier
temperature -- and optical phonon emission. At present, it is not clear what
determines the dominating relaxation pathway. Here we reach a unifying picture
of the ultrafast energy relaxation by investigating the terahertz
photoconductivity, while varying the Fermi energy, photon energy, and fluence
over a wide range. We find that sufficiently low fluence ( 4
J/cm) in conjunction with sufficiently high Fermi energy (
0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier
scattering, which leads to efficient carrier heating. Upon increasing the
fluence or decreasing the Fermi energy, the carrier heating efficiency
decreases, presumably due to energy relaxation that becomes increasingly
dominated by phonon emission. Carrier heating through carrier-carrier
scattering accounts for the negative photoconductivity for doped graphene
observed at terahertz frequencies. We present a simple model that reproduces
the data for a wide range of Fermi levels and excitation energies, and allows
us to qualitatively assess how the branching ratio between the two distinct
relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201
Recruitment strategies and rates of a multi-site behavioral intervention for adolescents and young adults with cancer
INTRODUCTION:
To provide an overview of factors related to recruitment of adolescents and young adults (AYA) into research and recruitment rates and reasons for refusal from a multicenter study entitled "Stories and Music for Adolescent/Young Adult Resilience during Transplant" (SMART).
METHODS:
A randomized clinical trial study design was used. The settings included 9 hospitals. The sample included AYAs (aged 11-24 years) who were undergoing a stem cell transplant. Several instruments were used to measure symptom distress, coping, resilience, and quality of life in AYA with cancer.
RESULTS:
A total of 113 AYA were recruited (50%) for this study. Strategies were refined as the study continued to address challenges related to recruitment. We provide a description of recruitment strategies and an evaluation of our planning, implementing, and monitoring of recruitment rates for the SMART study.
DISCUSSION:
When designing a study, careful consideration must be given to factors influencing recruitment as well as special considerations for unique populations. Dissemination of strategies specific to unique populations will be helpful to the design of future research studies
The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells
Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis.
<p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation.
<p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI.
<p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL
- …
