3,029 research outputs found
Recent developments of MCViNE and its applications at SNS
MCViNE is an open source, object-oriented Monte Carlo neutron ray-tracing simulation software package. Its design allows for flexible, hierarchical representations of sophisticated instrument components such as detector systems, and samples with a variety of shapes and scattering kernels. Recently this flexible design has enabled several applications of MCViNE simulations at the Spallation Neutron Source (SNS) at Oak Ridge National Lab, including assisting design of neutron instruments at the second target station and design of novel sample environments, as well as studying effects of instrument resolution and multiple scattering. Here we provide an overview of the recent developments and new features of MCViNE since its initial introduction (Jiao et al 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 810, 86–99), and some example applications
Intelligent chilled mirror humidity sensor
A new, intelligent, chilled mirror humidity instrument has been designed
for use on buoys and ships. The design goal is to make high quality dew point
temperature measurements for a period of up to one year from an unattended
platform, while consuming as little power as possible. Nominal system accuracy
is 0.3°C, and a measure of data quality is provided to indicate possible drift in
calibration. Energy consumption is typically 800 Joules per measurement; standby
power consumption is 0.05 watts. Control of the instrument is managed by an onboard
central processing unit which is programmable in BASIC, and communication
to an external data logger is provided through an RS232 compatible interface. This
report describes the preliminary sensor tests that led to this new design and provides
the complete technical description required for fabrication.Funding was provided by the Office of Naval Research
under contract Number N00014-84-C-0134,
and the National Science Foundation
through grant Number OCE87- 09614
Endothelial dysfunction in children with steroid-resistant nephrotic syndrome
Background: Steroid-resistant nephrotic syndrome (SRNS) is associated with early atherosclerosis because of comorbidities including persistent hyperlipidemia and hypertension. The aim of this study was to determine the incidence of abnormal carotid intima-media thickening (cIMT) as an early sign of atherosclerosis in a small group of children with SRNS. Methods: A total of 8 children with SRNS (mean age, 10.8±4.2 years at recruitment andmeandisease duration, 40.9±20.7 months) were studied; all children were normotensive. B-mode ultrasound was used to measure cIMT, and the results were compared with healthy controls. Results: Children with SRNS had significantly thicker CIMT (0.44±0.04 mm), compared to the controls (0.37±0.59mm)(P < 0.01). A high level of total cholesterol (5.4±2.0 mmol/L; normal < 5.2 mmol/L) was reported in these children, while normal levels of lowdensity lipoprotein, very-low-density lipoprotein, triglyceride, and high-density lipoprotein were found. Also, the mean creatinine level was 45.1±15.0 µmol/L, and the mean urea level was 4.2±1.8 mmol/L. Conclusions: Children with SRNS had an abnormal vascular phenotype with a thicker CIMT, compared to the controls and showed evidence of hypercholesterolemia
Palladium-catalysed direct regioselective C5-arylation of a thiophene bearing a cyclopropyl ketone group at C2
International audienceA thiophene bearing a cyclopropyl ketone group at C2 was successfully employed in palladium-catalysed direct arylation. The reaction proceeds regioselectively at C5 without decomposition of the cyclopropyl ketone substituent. These couplings were performed employing as little as 0.5 mol% of ligand-free Pd(OAc)2 catalyst with electron-deficient aryl bromides. A wide variety of functional groups on the aryl bromide such as nitrile, nitro, acetyl, formyl, benzoyl, ester, trifluoromethyl, fluoro or methoxy was tolerated. © 2013 Elsevier Science. All rights reserved
Inverse Modeling for MEG/EEG data
We provide an overview of the state-of-the-art for mathematical methods that
are used to reconstruct brain activity from neurophysiological data. After a
brief introduction on the mathematics of the forward problem, we discuss
standard and recently proposed regularization methods, as well as Monte Carlo
techniques for Bayesian inference. We classify the inverse methods based on the
underlying source model, and discuss advantages and disadvantages. Finally we
describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur
Moving from atheoretical to theoretical approaches to interprofessional client-centred collaborative practice
In this chapter we revisit the importance of theory in the development of interprofessional client centred education and practice (IPCEP). We focus specifically on the theoretical underpinnings and development of a workshop model aimed at moving practitioners from atheoretical to theoretical collaborative practice
A survey for near-infrared H2 emission in Herbig Ae/Be stars: emission from the outer disks of HD 97048 and HD 100546
We report on a sensitive search for H2 1-0 S(1), 1-0 S(0) and 2-1 S(1)
ro-vibrational emission at 2.12, 2.22 and 2.25 micron in a sample of 15 Herbig
Ae/Be stars employing CRIRES, the ESO-VLT near-infrared high-resolution
spectrograph, at R~90,000. We detect the H2 1-0 S(1) line toward HD 100546 and
HD 97048. In the other 13 targets, the line is not detected. The H2 1-0 S(0)
and 2-1 S(1) lines are undetected in all sources. This is the first detection
of near-IR H2 emission in HD 100546. The H2 1-0 S(1) lines observed in HD
100546 and HD 97048 are observed at a velocity consistent with the rest
velocity of both stars, suggesting that they are produced in the circumstellar
disk. In HD 97048, the emission is spatially resolved and it is observed to
extend at least up to 200 AU. We report an increase of one order of magnitude
in the H2 1-0 S(1) line flux with respect to previous measurements taken in
2003 for this star, which suggests line variability. In HD 100546 the emission
is tentatively spatially resolved and may extend at least up to 50 AU. Modeling
of the H2 1-0 S(1) line profiles and their spatial extent with flat keplerian
disks shows that most of the emission is produced at a radius >5 AU. Upper
limits to the H2 1-0 S(0)/ 1-0 S(1) and H2 2-1 S(1)/1-0 S(1) line ratios in HD
97048 are consistent with H2 gas at T>2000 K and suggest that the emission
observed may be produced by X-ray excitation. The upper limits for the line
ratios for HD 100546 are inconclusive. Because the H2 emission is located at
large radii, for both sources a thermal emission scenario (i.e., gas heated by
collisions with dust) is implausible. We argue that the observation of H2
emission at large radii may be indicative of an extended disk atmosphere at
radii >5 AU. This may be explained by a hydrostatic disk in which gas and dust
are thermally decoupled or by a disk wind caused by photoevaporation.Comment: Accepted by A&A. 16 pages, 7 figure
Robust Online Hamiltonian Learning
In this work we combine two distinct machine learning methodologies,
sequential Monte Carlo and Bayesian experimental design, and apply them to the
problem of inferring the dynamical parameters of a quantum system. We design
the algorithm with practicality in mind by including parameters that control
trade-offs between the requirements on computational and experimental
resources. The algorithm can be implemented online (during experimental data
collection), avoiding the need for storage and post-processing. Most
importantly, our algorithm is capable of learning Hamiltonian parameters even
when the parameters change from experiment-to-experiment, and also when
additional noise processes are present and unknown. The algorithm also
numerically estimates the Cramer-Rao lower bound, certifying its own
performance.Comment: 24 pages, 12 figures; to appear in New Journal of Physic
A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations
Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively
- …
