1,939 research outputs found

    Health advantages of transition to batch management system in farrow-to-finish pig herds

    Get PDF
    Sow batch management systems have become more popular due to advantages in labour planning, piglet batch sizes, all-in all-out practices and health management. The present study investigated the potential health advantages of 10 selected farrow-to-finish pig herds before and after transition from a one week batch management system to a four or five week batch management system. Five different animal categories (gilts, sows, piglets, growers and finishers) were sampled at three time points (T0, T1 and T2) before and after transition to a four or five week batch management system. Different matrices of the animals were collected: blood, nasal swabs and faeces. Several economically important diseases were monitored through serology: Lawsonia intracellularis, Porcine Reproductive and Respiratory Syndrome virus (PRRSv), Mycoplasma hyopneumoniae, Actinobacillus pleuropneurnoniae; and PCR-testing: Pasteurella multocida dermonecrotic toxin (DNT) and Brachyspira species, especially the major pathogenic Brachyspira hyodysenteriae. Following serological analysis, the percentage of positive animals per category and sampling occasion were calculated. Health improvement based on serology was defined as the reduction in the percentage of positive animals for a specific disease in a specified animal category. All samples were negative for P. multocida DNT and B. hyodysenteriae. Little to no improvement could be observed for PRRSv. For L. intracellularis an improvement could be observed in piglets (71%) and growers (56%; P < 0.05). For both of the respiratory pathogens, M. hyopneumoniae and A. pleuropneumoniae, significant improvement was observed in finishers (34 and 24%, respectively). In growers, only M. hyopneumoniae showed a significant improvement (34%). In conclusion, the transition from a one week batch management system to a four or five week batch management system in the present herds resulted in a reduction of the percentage of seropositive animals for three of the monitored economically important diseases: L. intracellularis, M. hyopneumoniae and A. pleuropneumoniae

    The role of HLA-DP mismatches and donor specific HLA-DP antibodies in kidney transplantation : a case series

    Get PDF
    BACKGROUND: The impact of HLA-DP mismatches on renal allograft outcome is still poorly understood and is suggested to be less than that of the other HLA loci. The common association of HLA-DP donor-specific antibodies (DSA) with other DSA obviates the evaluation of the actual effect of HLA-DP DSA. METHODS: From a large multicenter data collection, we retrospectively evaluated the significance of HLA-DP DSA on transplant outcome and the immunogenicity of HLA-DP eplet mismatches with respect to the induction of HLA-DP DSA. Furthermore, we evaluated the association between the MFI of HLA-DP antibodies detected in Luminex assays and the outcome of flowcytometric/complement-dependent cytotoxicity (CDC) crossmatches. RESULTS: In patients with isolated pretransplant HLA-DP antibodies (N = 13), 6 experienced antibody-mediated rejection (AMR) and 3 patients lost their graft. In HLAMatchmaker analysis of HLA-DP mismatches (N = 72), HLA-DP DSA developed after cessation of immunosuppression in all cases with 84DEAV (N = 14), in 86% of cases with 85GPM (N = 6/7), in 50% of cases with 56E (N = 6/12) and in 40% of cases with 56A mismatch (N = 2/5). Correlation analysis between isolated HLA-DP DSA MFI and crossmatches (N = 90) showed negative crossmatch results with HLA-DP DSA MFI <2000 (N = 14). Below an MFI of 10,000 CDC crossmatches were also negative (N = 33). Above these MFI values both positive (N = 35) and negative (N = 16) crossmatch results were generated. CONCLUSIONS: Isolated HLA-DP DSA are rare, yet constitute a significant risk for AMR. We identified high-risk eplet mismatches that can lead to HLA-DP DSA formation. We therefore recommend HLA-DP typing to perform HLA-DP DSA analysis before transplantation. HLA-DP DSA with high MFI were not always correlated with positive crossmatch results

    Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications

    Get PDF
    Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 · 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals

    Mastering the game of Go without human knowledge

    Get PDF
    A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo

    From regional pulse vaccination to global disease eradication: insights from a mathematical model of Poliomyelitis

    Get PDF
    Mass-vaccination campaigns are an important strategy in the global fight against poliomyelitis and measles. The large-scale logistics required for these mass immunisation campaigns magnifies the need for research into the effectiveness and optimal deployment of pulse vaccination. In order to better understand this control strategy, we propose a mathematical model accounting for the disease dynamics in connected regions, incorporating seasonality, environmental reservoirs and independent periodic pulse vaccination schedules in each region. The effective reproduction number, ReR_e, is defined and proved to be a global threshold for persistence of the disease. Analytical and numerical calculations show the importance of synchronising the pulse vaccinations in connected regions and the timing of the pulses with respect to the pathogen circulation seasonality. Our results indicate that it may be crucial for mass-vaccination programs, such as national immunisation days, to be synchronised across different regions. In addition, simulations show that a migration imbalance can increase ReR_e and alter how pulse vaccination should be optimally distributed among the patches, similar to results found with constant-rate vaccination. Furthermore, contrary to the case of constant-rate vaccination, the fraction of environmental transmission affects the value of ReR_e when pulse vaccination is present.Comment: Added section 6.1, made other revisions, changed titl

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies
    corecore