10,975 research outputs found

    3D multi-robot patrolling with a two-level coordination strategy

    Get PDF
    Teams of UGVs patrolling harsh and complex 3D environments can experience interference and spatial conflicts with one another. Neglecting the occurrence of these events crucially hinders both soundness and reliability of a patrolling process. This work presents a distributed multi-robot patrolling technique, which uses a two-level coordination strategy to minimize and explicitly manage the occurrence of conflicts and interference. The first level guides the agents to single out exclusive target nodes on a topological map. This target selection relies on a shared idleness representation and a coordination mechanism preventing topological conflicts. The second level hosts coordination strategies based on a metric representation of space and is supported by a 3D SLAM system. Here, each robot path planner negotiates spatial conflicts by applying a multi-robot traversability function. Continuous interactions between these two levels ensure coordination and conflicts resolution. Both simulations and real-world experiments are presented to validate the performances of the proposed patrolling strategy in 3D environments. Results show this is a promising solution for managing spatial conflicts and preventing deadlocks

    Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values

    Get PDF
    The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data

    PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4(+) T cell transcriptomal molecular signatures.

    Get PDF
    Protective efficacy of Bacillus Calmette-Guérin (BCG) may be affected by the methods and routes of vaccine administration. We have studied the safety and immunogenicity of oral (PO) and/or intradermal (ID) administration of BCG in healthy human subjects. No major safety concerns were detected in the 68 healthy adults vaccinated with PO and/or ID BCG. Although both PO and ID BCG could induce systemic Th1 responses capable of IFN-γ production, ID BCG more strongly induced systemic Th1 responses. In contrast, stronger mucosal responses (TB-specific secretory IgA and bronchoalveolar lavage T cells) were induced by PO BCG vaccination. To generate preliminary data comparing the early gene signatures induced by mucosal and systemic BCG vaccination, CD4(+) memory T cells were isolated from subsets of BCG vaccinated subjects pre- (Day 0) and post-vaccination (Days 7 and 56), rested or stimulated with BCG infected dendritic cells, and then studied by Illumina BeadArray transcriptomal analysis. Notably, distinct gene expression profiles were identified both on Day 7 and Day 56 comparing the PO and ID BCG vaccinated groups by GSEA analysis. Future correlation analyses between specific gene expression patterns and distinct mucosal and systemic immune responses induced will be highly informative for TB vaccine development.Mucosal Immunology advance online publication 30 August 2017; doi:10.1038/mi.2017.67

    Direct hemoglobin measurement by monolithically integrated optical beam guidance

    Get PDF
    We present a concept for optical beam guidance by total internal reflection (TIR) at V-grooves as retro reflectors which are monolithically integrated on a microfluidic "lab-on-a-disk". This way, the optical path length through a measurement chamber and thus the sensitivity of colorimetric assays is massively enhanced compared to direct (perpendicular) beam incidence. With this rugged optical concept, we determine the concentration of hemoglobin (Hb) in human whole blood. Outstanding features are a high degree of linearity (R2 = 0.993) between the optical signal and the Hb together with a reproducibility of CV= 2.9 %, and a time-to-result of 100 seconds, only

    Roller Testing to Mimic Damage of the ISS SARJ Ring and Durability Test to Simulate Fifteen Years of SARJ Operation Using the Damaged Surface

    Get PDF
    The International Space Station's starboard Solar Alpha Rotary Joint (SARJ) experienced a breakdown of the joint's race ring surface. The starboard SARJ mechanism was cleaned and lubricated with grease. To provide some guidance on the expected behavior of the damaged SARJ ring with continued operations, experiments were conducted using rollers and a vacuum roller test rig. The approach of the experimental work involved three main steps: (1) initiate damage using conditions representative of the SARJ with inadequate lubrication; (2) propagate the damage by operating the test rollers without lubrication; and (3) assess the durability of the roller by testing to simulate the equivalent of 15 years of SARJ operation on the damaged surface assuming adequate grease lubrication. During the rig testing, additional and/or replacement grease was introduced at regular intervals to maintain good lubrication in the rig. The damage to the nitride layer continued even after application of grease. The grease lubrication proved to be effective for limiting the value of the axial force that can be developed. Limiting the axial force on the SARJ mechanism is important since the larger the axial force the more concentrated the load pressure becomes on the blend-radius location on the SARJ roller. After the testing simulating 15 years of SARJ operations, the wear depths were the order of 0.2 mm for the nitrided 15-5 roller and the order of 0.06 mm for the mating 440C roller. Metallographic inspections were done to search for indications of impending fatigue or other fracture indications that might eventually propagate and cause structural failure. There were no indications or features found that could eventually compromise structural integrity

    ISS Solar Array Alpha Rotary Joint (SARJ) Bearing Failure and Recovery: Technical and Project Management Lessons Learned

    Get PDF
    The photovoltaic solar panels on the International Space Station (ISS) track the Sun through continuous rotating motion enabled by large bearings on the main truss called solar array alpha rotary joints (SARJs). In late 2007, shortly after installation, the starboard SARJ had become hard to turn and had to be shut down after exceeding drive current safety limits. The port SARJ, of the same design, had been working well for over 2 years. An exhaustive failure investigation ensued that included multiple extravehicular activities to collect information and samples for engineering forensics, detailed structural and thermal analyses, and a careful review of the build records. The ultimate root cause was determined to be kinematic design vulnerability coupled with inadequate lubrication, and manufacturing flaws; this was corroborated through ground tests, metallurgical studies, and modeling. A highly successful recovery plan was developed and implemented that included replacing worn and damaged components in orbit and applying space-compatible grease to improve lubrication. Beyond the technical aspects, however, lie several key programmatic lessons learned. These lessons, such as running ground tests to intentional failure to experimentally verify failure modes, are reviewed and discussed so they can be applied to future projects to avoid such problems
    corecore