1,174 research outputs found
Shock Induced Decomposition and Sensitivity of Energetic Materials by ReaxFF Molecular Dynamics
We develop strain-driven compression-expansion technique using molecular dynamics (MD) with reactive force fields (ReaxFF) to study the impact sensitivity of energetic materials. It has been applied to simulation of 1,3,5-trinitrohexahydro-s-triazine (RDX) crystal subjected to high-rate compression typical at the detonation front. The obtained results show that at lower compression ratio x = 1-V/V040%) all molecules decompose very quickly. We have observed both primary and secondary reactions during the decomposition process as well as production of various intermediates (NO2, NO, HONO, OH) and final products (H2O, N2, CO, CO2). The results of strain-driven compression-expansion modeling are in a good agreement with previous ReaxFF-MD shock simulations in RDX. Proposed approach might be useful for a quick test of sensitivity of energetic materials under conditions of high strain rate loading
Energetic Materials at High Compression: First-Principles Density Functional Theory and Reactive Force Field Studies
We report the results of a comparative study of pentaerythritol tetranitrate (PETN) at high compression using classical reactive interatomic potential ReaxFF and first-principles density functional theory (DFT). Lattice parameters of PETN I, the ground state structure at ambient conditions, is obtained by ReaxFF and two different density functional methods (plane wave and LCAO pseudopotential methods) and compared with experiment. Calculated energetics and isothermal equation of state (EOS) upon hydrostatic compression obtained by DFT and ReaxFF are both in good agreement with available experimental data. Our calculations of the hydrostatic EOS at zero temperature are extended to high pressures up to 50 GPa. The anisotropic characteristics of PETN upon uniaxial compression were also calculated by both ReaxFF and DFT
Vijftig jaar monitoring en beheer van de Friese en Groninger kwelderwerken: 1960-2009
Dit WOt-werkdocument is een update van het kwelderboek uit 2001 en gaat ook over de bescherming door de kwelderwerken tegen de Allerheiligenvloed van 2006, over de Kaderrichtlijn Water en over de Sylt Conferentie van 2010. In 2007 verscheen in de WOT IN serie al een deel over Monitoring van kwelders in de Waddenzee, met beheermaatregelen voor alle kwelders (www.waddenzee.nl/Kwelders.1982.0.html). In de publicaties is ook aandacht voor beweiding, vegetatiekaarten, veroudering van de vegetatie, zeegras, grondwerk, ontwatering, en duurzaamheid van de rijshoutdammen
Predicting protein decomposition: the case of aspartic-acid racemization kinetics
The increase in proportion of the non-biological (D-) isomer of aspartic acid (Asp) relative to the L- isomer has been widely used in archaeology and geochemistry as a tool for dating. The method has proved controversial, particularly when used for bones. The non-linear kinetics of Asp racemization have prompted a number of suggestions as to the underlying mechanism(s) and have led to the use of mathe- matical transformations which linearize the increase in D-Asp with respect to time. Using one example, a suggestion that the initial rapid phase of Asp racemization is due to a contribution from asparagine (Asn), we demonstrate how a simple model of the degradation and racemization of Asn can be used to predict the observed kinetics. A more complex model of peptide bound Asx (Asn+Asp) racemization, which occurs via the formation of a cyclic succinimide (Asu), can be used to correctly predict Asx racemi- zation kinetics in proteins at high temperatures (95-140 °C). The model fails to predict racemization kinetics in dentine collagen at 37 °C. The reason for this is that Asu formation is highly conformation dependent and is predicted to occur extremely slowly in triple helical collagen. As conformation strongly in£uences the rate of Asu formation and hence Asx racemization, the use of extrapolation from high temperatures to estimate racemization kinetics of Asx in proteins below their denaturation temperature is called into question. In the case of archaeological bone, we argue that the D:L ratio of Asx re£ects the proportion of non- helical to helical collagen, overlain by the e¡ects of leaching of more soluble (and conformationally unconstrained) peptides. Thus, racemization kinetics in bone are potentially unpredictable, and the proposed use of Asx racemization to estimate the extent of DNA depurination in archaeological bones is challenged
Multidrug-Resistant Bacteria in the Community
Multidrug resistant (MDR) bacteria are one of the most important current threats to public health. Typically, MDR bacteria are associated with nosocomial infections. However, some MDR bacteria have become quite prevalent causes of community-acquired infections. The spread of MDR bacteria into the community is a crucial development, and is associated with increased morbidity, mortality, healthcare costs and antibiotic use. Factors associated with community dissemination of MDR bacteria overlap but are distinct from those associated with nosocomial spread. Community-associated (CA) MDR bacteria have an antibiotic resistance phenotype that is stable in the absence of antibiotic pressure of the type normally observed in hospitals or nursing homes. An exception to this rule may be those CA-MDR bacteria, of which the prevalence is driven by the presence of antibiotics in the food chain. Additionally, the colonization of otherwise healthy hosts is a common characteristic of CA-MDR bacteria. However, subtle immune deficiencies may still be present in the subjects colonized with specific CA-MDR bacteria. Methicillin-resistant S. aureus (MRSA) is the most prevalent of CA-MDR bacteria. CA-MRSA also has the greatest impact on morbidity and mortality. The main threat on the horizon is represented by Enterobacteriaceae. The production of extended spectrum β-lactamases in Enterobacteriaceae encountered in the community is becoming increasingly prevalent. Of great concern is the potential for the acquisition of carbapenemase genes in CA-Enterobacteriaceae. Prevention of further community spread of MDR bacteria is of the utmost importance, and will require a multi-disciplinary approach involving all stakeholders
Nonthermal Emission from a Supernova Remnant in a Molecular Cloud
In evolved supernova remnants (SNRs) interacting with molecular clouds, such
as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a
forward shock of moderate Mach number, a cooling layer, a dense radiative shell
and an interior region filled with hot tenuous plasma is expected. We present a
kinetic model of nonthermal electron injection, acceleration and propagation in
that environment and find that these SNRs are efficient electron accelerators
and sources of hard X- and gamma-ray emission. The energy spectrum of the
nonthermal electrons is shaped by the joint action of first and second order
Fermi acceleration in a turbulent plasma with substantial Coulomb losses.
Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal
electrons produce multiwavelength photon spectra in quantitative agreement with
the radio and the hard emission observed by ASCA and EGRET from IC 443. We
distinguish interclump shock wave emission from molecular clump shock wave
emission accounting for a complex structure of molecular cloud. Spatially
resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and
3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST
would distinguish the contribution of the energetic lepton component to the
gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press
Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes
Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.
Suppression of Antiferromagnetic Order by Light Hole Doping in La_2Cu_{1-x}Li_xO_4: A ^{139}La NQR Study
^{139}La nuclear quadrupole resonance measurements in lightly doped
La_2Cu_{1-x}Li_xO_4 have been performed to reveal the dependence of the
magnetic properties of the antiferromagnetic CuO_2 planes on the character of
the doped holes and their interactions with the dopant. A detailed study shows
that the magnetic properties are remarkably insensitive to the character of the
dopant impurity. This indicates that the added holes form previously
unrecognized collective structures.Comment: 4 pages, 3 figures. Slightly modified version, as accepted for
publication in Physical Review Letter
Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array
When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a
radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to
detect these pulses. In this work we propose an efficient trigger
implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research
Section
- …
