713 research outputs found
Efficient model chemistries for peptides. I. Split-valence Gaussian basis sets and the heterolevel approximation in RHF and MP2
We present an exhaustive study of more than 250 ab initio potential energy
surfaces (PESs) of the model dipeptide HCO-L-Ala-NH2. The model chemistries
(MCs) used are constructed as homo- and heterolevels involving possibly
different RHF and MP2 calculations for the geometry and the energy. The basis
sets used belong to a sample of 39 selected representants from Pople's
split-valence families, ranging from the small 3-21G to the large
6-311++G(2df,2pd). The reference PES to which the rest are compared is the
MP2/6-311++G(2df,2pd) homolevel, which, as far as we are aware, is the more
accurate PES of a dipeptide in the literature. The aim of the study presented
is twofold: On the one hand, the evaluation of the influence of polarization
and diffuse functions in the basis set, distinguishing between those placed at
1st-row atoms and those placed at hydrogens, as well as the effect of different
contraction and valence splitting schemes. On the other hand, the investigation
of the heterolevel assumption, which is defined here to be that which states
that heterolevel MCs are more efficient than homolevel MCs. The heterolevel
approximation is very commonly used in the literature, but it is seldom
checked. As far as we know, the only tests for peptides or related systems,
have been performed using a small number of conformers, and this is the first
time that this potentially very economical approximation is tested in full
PESs. In order to achieve these goals, all data sets have been compared and
analyzed in a way which captures the nearness concept in the space of MCs.Comment: 54 pages, 16 figures, LaTeX, AMSTeX, Submitted to J. Comp. Che
Effects of constraints in general branched molecules: A quantitative ab initio study in HCO-L-Ala-NH2
A general approach to the design of accurate classical potentials for protein
folding is described. It includes the introduction of a meaningful statistical
measure of the differences between approximations of the same potential energy,
the definition of a set of Systematic and Approximately Separable and Modular
Internal Coordinates (SASMIC), much convenient for the simulation of general
branched molecules, and the imposition of constraints on the most rapidly
oscillating degrees of freedom. All these tools are used to study the effects
of constraints in the Conformational Equilibrium Distribution (CED) of the
model dipeptide HCO-L-Ala-NH2. We use ab initio Quantum Mechanics calculations
including electron correlation at the MP2 level to describe the system, and we
measure the conformational dependence of the correcting terms to the naive CED
based in the Potential Energy Surface (PES) without any simplifying assumption.
These terms are related to mass-metric tensors determinants and also occur in
the Fixman's compensating potential. We show that some of the corrections are
non-negligible if one is interested in the whole Ramachandran space. On the
other hand, if only the energetically lower region, containing the principal
secondary structure elements, is assumed to be relevant, then, all correcting
terms may be neglected up to peptides of considerable length. This is the first
time, as far as we know, that the analysis of the conformational dependence of
these correcting terms is performed in a relevant biomolecule with a realistic
potential energy function.Comment: 8 pages, 1 figure, LaTeX, aipproc style (included
Self-energy and lifetime of Shockley and image states on Cu(100) and Cu(111): Beyond the GW approximation of many-body theory
We report many-body calculations of the self-energy and lifetime of Shockley
and image states on the (100) and (111) surfaces of Cu that go beyond the
approximation of many-body theory. The self-energy is computed in the framework
of the GW\Gamma approximation by including short-range exchange-correlation
(XC) effects both in the screened interaction W (beyond the random-phase
approximation) and in the expansion of the self-energy in terms of W (beyond
the GW approximation). Exchange-correlation effects are described within
time-dependent density-functional theory from the knowledge of an adiabatic
nonlocal XC kernel that goes beyond the local-density approximation.Comment: 8 pages, 5 figures, to appear in Phys. Rev.
The role of surface plasmons in the decay of image-potential states on silver surfaces
The combined effect of single-particle and collective surface excitations in
the decay of image-potential states on Ag surfaces is investigated, and the
origin of the long-standing discrepancy between experimental measurements and
previous theoretical predictions for the lifetime of these states is
elucidated. Although surface-plasmon excitation had been expected to reduce the
image-state lifetime, we demonstrate that the subtle combination of the spatial
variation of s-d polarization in Ag and the characteristic non-locality of
many-electron interactions near the surface yields surprisingly long
image-state lifetimes, in agreement with experiment.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let
Efficient formalism for large scale ab initio molecular dynamics based on time-dependent density functional theory
A new "on the fly" method to perform Born-Oppenheimer ab initio molecular
dynamics (AIMD) is presented. Inspired by Ehrenfest dynamics in time-dependent
density functional theory, the electronic orbitals are evolved by a
Schroedinger-like equation, where the orbital time derivative is multiplied by
a parameter. This parameter controls the time scale of the fictitious
electronic motion and speeds up the calculations with respect to standard
Ehrenfest dynamics. In contrast to other methods, wave function orthogonality
needs not be imposed as it is automatically preserved, which is of paramount
relevance for large scale AIMD simulations.Comment: 5 pages, 3 color figures, revtex4 packag
One-dimensional potential for image-potential states on graphene
In the framework of dielectric theory the static non-local self-energy of an
electron near an ultra-thin polarizable layer has been calculated and applied
to study binding energies of image-states near free-standing graphene. The
corresponding series of eigenvalues and eigenfunctions have been obtained by
solving numerically the one-dimensional Schr{\"o}dinger equation.
Image-potential-state wave functions accumulate most of their probability
outside the slab. We find that a Random Phase Approximation (RPA) for the
non-local dielectric function yields a superior description for the potential
inside the slab, but a simple Fermi-Thomas theory can be used to get a
reasonable quasi-analytical approximation to the full RPA result that can be
computed very economically. Binding energies of the image-potential states
follow a pattern close to the Rydberg series for a perfect metal with the
addition of intermediate states due to the added symmetry of the potential. The
formalism only requires a minimal set of free parameters; the slab width and
the electronic density. The theoretical calculations are compared to
experimental results for work function and image-potential states obtained by
two-photon photoemission.Comment: 24 pages; 10 figures. arXiv admin note: text overlap with
arXiv:1301.448
Comment on "Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction" [J. Chem. Phys. 137, 22A530 (2012)]
In spite of the relevance of the proposal introduced in the recent work A.
Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys. 137, 22A530, 2012, there
is an important ingredient which is missing. Namely, the proof that the norms
of the electronic and nuclear wavefunctions which are the solutions to the
nonlinear equations of motion are preserved by the evolution. To prove the
conservation of these norms is precisely the objective of this Comment.Comment: 2 pages, published versio
- …
