3,608 research outputs found
Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program Final report, 1 Feb. 1969 - 24 Aug. 1970
Research progress in technology transfer by NASA Biomedical Application Tea
Southwest Research Institute assistance to NASA in biomedical areas of the Technology Utilization program
Technology utilization in biomedical areas, particularly for infants and handicapped person
Southwest Research Institute assistance to NASA in biomedical areas of the technology
Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface
Turbulence transition and the edge of chaos in pipe flow
The linear stability of pipe flow implies that only perturbations of
sufficient strength will trigger the transition to turbulence. In order to
determine this threshold in perturbation amplitude we study the \emph{edge of
chaos} which separates perturbations that decay towards the laminar profile and
perturbations that trigger turbulence. Using the lifetime as an indicator and
methods developed in (Skufca et al, Phys. Rev. Lett. {\bf 96}, 174101 (2006))
we show that superimposed on an overall -scaling predicted and studied
previously there are small, non-monotonic variations reflecting folds in the
edge of chaos. By tracing the motion in the edge we find that it is formed by
the stable manifold of a unique flow field that is dominated by a pair of
downstream vortices, asymmetrically placed towards the wall. The flow field
that generates the edge of chaos shows intrinsic chaotic dynamics.Comment: 4 pages, 5 figure
A theoretical basis for the analysis of redundant software subject to coincident errors
Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists
Probability Distributions of Random Electromagnetic Fields in the Presence of a Semi-Infinite Isotropic Medium
Using a TE/TM decomposition for an angular plane-wave spectrum of free random
electromagnetic waves and matched boundary conditions, we derive the
probability density function for the energy density of the vector electric
field in the presence of a semi-infinite isotropic medium. The theoretical
analysis is illustrated with calculations and results for good electric
conductors and for a lossless dielectric half-space. The influence of the
permittivity and conductivity on the intensity, random polarization,
statistical distribution and standard deviation of the field is investigated,
both for incident plus reflected fields and for refracted fields. External
refraction is found to result in compression of the fluctuations of the random
field.Comment: 23 pages, 11 figures, accepted for publication in Radio Scienc
Statistical analysis of coherent structures in transitional pipe flow
Numerical and experimental studies of transitional pipe flow have shown the
prevalence of coherent flow structures that are dominated by downstream
vortices. They attract special attention because they contribute predominantly
to the increase of the Reynolds stresses in turbulent flow. In the present
study we introduce a convenient detector for these coherent states, calculate
the fraction of time the structures appear in the flow, and present a Markov
model for the transition between the structures. The fraction of states that
show vortical structures exceeds 24% for a Reynolds number of about Re=2200,
and it decreases to about 20% for Re=2500. The Markov model for the transition
between these states is in good agreement with the observed fraction of states,
and in reasonable agreement with the prediction for their persistence. It
provides insight into dominant qualitative changes of the flow when increasing
the Reynolds number.Comment: 11 pages, 26 (sub)figure
Design diversity: an update from research on reliability modelling
Diversity between redundant subsystems is, in various forms, a common design approach for improving system dependability. Its value in the case of software-based systems is still controversial. This paper gives an overview of reliability modelling work we carried out in recent projects on design diversity, presented in the context of previous knowledge and practice. These results provide additional insight for decisions in applying diversity and in assessing diverseredundant systems. A general observation is that, just as diversity is a very general design approach, the models of diversity can help conceptual understanding of a range of different situations. We summarise results in the general modelling of common-mode failure, in inference from observed failure data, and in decision-making for diversity in development.
How does flow in a pipe become turbulent?
The transition to turbulence in pipe flow does not follow the scenario
familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile
is stable against infinitesimal perturbations for all Reynolds numbers.
Moreover, even when the flow speed is high enough and the perturbation
sufficiently strong such that turbulent flow is established, it can return to
the laminar state without any indication of the imminent decay. In this
parameter range, the lifetimes of perturbations show a sensitive dependence on
initial conditions and an exponential distribution. The turbulence seems to be
supported by three-dimensional travelling waves which appear transiently in the
flow field. The boundary between laminar and turbulent dynamics is formed by
the stable manifold of an invariant chaotic state. We will also discuss the
relation between observations in short, periodically continued domains, and the
dynamics in fully extended puffs.Comment: for the proceedings of statphys 2
Travelling waves in pipe flow
A family of three-dimensional travelling waves for flow through a pipe of
circular cross section is identified. The travelling waves are dominated by
pairs of downstream vortices and streaks. They originate in saddle-node
bifurcations at Reynolds numbers as low as 1250. All states are immediately
unstable. Their dynamical significance is that they provide a skeleton for the
formation of a chaotic saddle that can explain the intermittent transition to
turbulence and the sensitive dependence on initial conditions in this shear
flow.Comment: 4 pages, 5 figure
- …
