900 research outputs found

    Local syzygies of multiplier ideals

    Full text link
    In recent years, multiplier ideals have found many applications in local and global algebraic geometry. Because of their importance, there has been some interest in the question of which ideals on a smooth complex variety can be realized as multiplier ideals. Other than integral closure no local obstructions have been known up to now, and in dimension two it was established by Favre-Jonsson and Lipman-Watanabe that any integrally closed ideal is locally a multiplier ideal. We prove the somewhat unexpected result that multiplier ideals in fact satisfy some rather strong algebraic properties involving higher syzygies. It follows that in dimensions three and higher, multiplier ideals are very special among all integrally closed ideals.Comment: 8 page

    A Frobenius variant of Seshadri constants

    Full text link
    We define and study a version of Seshadri constant for ample line bundles in positive characteristic. We prove that lower bounds for this constant imply the global generation or very ampleness of the corresponding adjoint line bundle. As a consequence, we deduce that the criterion for global generation and very ampleness of adjoint line bundles in terms of usual Seshadri constants holds also in positive characteristic.Comment: 16 page

    On codimension two flats in Fermat-type arrangements

    Full text link
    In the present note we study certain arrangements of codimension 22 flats in projective spaces, we call them "Fermat arrangements". We describe algebraic properties of their defining ideals. In particular, we show that they provide counterexamples to an expected containment relation between ordinary and symbolic powers of homogeneous ideals.Comment: 9 page

    Waldschmidt constants for Stanley-Reisner ideals of a class of graphs

    Full text link
    In the present note we study Waldschmidt constants of Stanley-Reisner ideals of a hypergraph and a graph with vertices forming a bipyramid over a planar n-gon. The case of the hypergraph has been studied by Bocci and Franci. We reprove their main result. The case of the graph is new. Interestingly, both cases provide series of ideals with Waldschmidt constants descending to 1. It would be interesting to known if there are bounded ascending sequences of Waldschmidt constants.Comment: 7 pages, 2 figure

    Learning and predicting time series by neural networks

    Full text link
    Artificial neural networks which are trained on a time series are supposed to achieve two abilities: firstly to predict the series many time steps ahead and secondly to learn the rule which has produced the series. It is shown that prediction and learning are not necessarily related to each other. Chaotic sequences can be learned but not predicted while quasiperiodic sequences can be well predicted but not learned.Comment: 5 page

    Learning and generation of long-range correlated sequences

    Full text link
    We study the capability to learn and to generate long-range, power-law correlated sequences by a fully connected asymmetric network. The focus is set on the ability of neural networks to extract statistical features from a sequence. We demonstrate that the average power-law behavior is learnable, namely, the sequence generated by the trained network obeys the same statistical behavior. The interplay between a correlated weight matrix and the sequence generated by such a network is explored. A weight matrix with a power-law correlation function along the vertical direction, gives rise to a sequence with a similar statistical behavior.Comment: 5 pages, 3 figures, accepted for publication in Physical Review

    Linear Toric Fibrations

    Full text link
    These notes are based on three lectures given at the 2013 CIME/CIRM summer school. The purpose of this series of lectures is to introduce the notion of a toric fibration and to give its geometrical and combinatorial characterizations. Polarized toric varieties which are birationally equivalent to projective toric bundles are associated to a class of polytopes called Cayley polytopes. Their geometry and combinatorics have a fruitful interplay leading to fundamental insight in both directions. These notes will illustrate geometrical phenomena, in algebraic geometry and neighboring fields, which are characterized by a Cayley structure. Examples are projective duality of toric varieties and polyhedral adjunction theory

    On the classification of OADP varieties

    Full text link
    The main purpose of this paper is to show that OADP varieties stand at an important crossroad of various main streets in different disciplines like projective geometry, birational geometry and algebra. This is a good reason for studying and classifying them. Main specific results are: (a) the classification of all OADP surfaces (regardless to their smoothness); (b) the classification of a relevant class of normal OADP varieties of any dimension, which includes interesting examples like lagrangian grassmannians. Following [PR], the equivalence of the classification in (b) with the one of quadro-quadric Cremona transformations and of complex, unitary, cubic Jordan algebras are explained.Comment: 13 pages. Dedicated to Fabrizio Catanese on the occasion of his 60th birthday. To appear in a special issue of Science in China Series A: Mathematic

    The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic

    Full text link
    We study the dynamics of a backtracking procedure capable of proving uncolourability of graphs, and calculate its average running time T for sparse random graphs, as a function of the average degree c and the number of vertices N. The analysis is carried out by mapping the history of the search process onto an out-of-equilibrium (multi-dimensional) surface growth problem. The growth exponent of the average running time is quantitatively predicted, in agreement with simulations.Comment: 5 figure

    The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures

    Get PDF
    Motivation: Biomarker discovery from high-dimensional data is a crucial problem with enormous applications in biology and medicine. It is also extremely challenging from a statistical viewpoint, but surprisingly few studies have investigated the relative strengths and weaknesses of the plethora of existing feature selection methods. Methods: We compare 32 feature selection methods on 4 public gene expression datasets for breast cancer prognosis, in terms of predictive performance, stability and functional interpretability of the signatures they produce. Results: We observe that the feature selection method has a significant influence on the accuracy, stability and interpretability of signatures. Simple filter methods generally outperform more complex embedded or wrapper methods, and ensemble feature selection has generally no positive effect. Overall a simple Student's t-test seems to provide the best results. Availability: Code and data are publicly available at http://cbio.ensmp.fr/~ahaury/
    corecore