900 research outputs found
Local syzygies of multiplier ideals
In recent years, multiplier ideals have found many applications in local and
global algebraic geometry. Because of their importance, there has been some
interest in the question of which ideals on a smooth complex variety can be
realized as multiplier ideals. Other than integral closure no local
obstructions have been known up to now, and in dimension two it was established
by Favre-Jonsson and Lipman-Watanabe that any integrally closed ideal is
locally a multiplier ideal. We prove the somewhat unexpected result that
multiplier ideals in fact satisfy some rather strong algebraic properties
involving higher syzygies. It follows that in dimensions three and higher,
multiplier ideals are very special among all integrally closed ideals.Comment: 8 page
A Frobenius variant of Seshadri constants
We define and study a version of Seshadri constant for ample line bundles in
positive characteristic. We prove that lower bounds for this constant imply the
global generation or very ampleness of the corresponding adjoint line bundle.
As a consequence, we deduce that the criterion for global generation and very
ampleness of adjoint line bundles in terms of usual Seshadri constants holds
also in positive characteristic.Comment: 16 page
On codimension two flats in Fermat-type arrangements
In the present note we study certain arrangements of codimension flats in
projective spaces, we call them "Fermat arrangements". We describe algebraic
properties of their defining ideals. In particular, we show that they provide
counterexamples to an expected containment relation between ordinary and
symbolic powers of homogeneous ideals.Comment: 9 page
Waldschmidt constants for Stanley-Reisner ideals of a class of graphs
In the present note we study Waldschmidt constants of Stanley-Reisner ideals
of a hypergraph and a graph with vertices forming a bipyramid over a planar
n-gon. The case of the hypergraph has been studied by Bocci and Franci. We
reprove their main result. The case of the graph is new. Interestingly, both
cases provide series of ideals with Waldschmidt constants descending to 1. It
would be interesting to known if there are bounded ascending sequences of
Waldschmidt constants.Comment: 7 pages, 2 figure
Learning and predicting time series by neural networks
Artificial neural networks which are trained on a time series are supposed to
achieve two abilities: firstly to predict the series many time steps ahead and
secondly to learn the rule which has produced the series. It is shown that
prediction and learning are not necessarily related to each other. Chaotic
sequences can be learned but not predicted while quasiperiodic sequences can be
well predicted but not learned.Comment: 5 page
Learning and generation of long-range correlated sequences
We study the capability to learn and to generate long-range, power-law
correlated sequences by a fully connected asymmetric network. The focus is set
on the ability of neural networks to extract statistical features from a
sequence. We demonstrate that the average power-law behavior is learnable,
namely, the sequence generated by the trained network obeys the same
statistical behavior. The interplay between a correlated weight matrix and the
sequence generated by such a network is explored. A weight matrix with a
power-law correlation function along the vertical direction, gives rise to a
sequence with a similar statistical behavior.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Linear Toric Fibrations
These notes are based on three lectures given at the 2013 CIME/CIRM summer
school. The purpose of this series of lectures is to introduce the notion of a
toric fibration and to give its geometrical and combinatorial
characterizations. Polarized toric varieties which are birationally equivalent
to projective toric bundles are associated to a class of polytopes called
Cayley polytopes. Their geometry and combinatorics have a fruitful interplay
leading to fundamental insight in both directions. These notes will illustrate
geometrical phenomena, in algebraic geometry and neighboring fields, which are
characterized by a Cayley structure. Examples are projective duality of toric
varieties and polyhedral adjunction theory
On the classification of OADP varieties
The main purpose of this paper is to show that OADP varieties stand at an
important crossroad of various main streets in different disciplines like
projective geometry, birational geometry and algebra. This is a good reason for
studying and classifying them. Main specific results are: (a) the
classification of all OADP surfaces (regardless to their smoothness); (b) the
classification of a relevant class of normal OADP varieties of any dimension,
which includes interesting examples like lagrangian grassmannians. Following
[PR], the equivalence of the classification in (b) with the one of
quadro-quadric Cremona transformations and of complex, unitary, cubic Jordan
algebras are explained.Comment: 13 pages. Dedicated to Fabrizio Catanese on the occasion of his 60th
birthday. To appear in a special issue of Science in China Series A:
Mathematic
The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic
We study the dynamics of a backtracking procedure capable of proving
uncolourability of graphs, and calculate its average running time T for sparse
random graphs, as a function of the average degree c and the number of vertices
N. The analysis is carried out by mapping the history of the search process
onto an out-of-equilibrium (multi-dimensional) surface growth problem. The
growth exponent of the average running time is quantitatively predicted, in
agreement with simulations.Comment: 5 figure
The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
Motivation: Biomarker discovery from high-dimensional data is a crucial
problem with enormous applications in biology and medicine. It is also
extremely challenging from a statistical viewpoint, but surprisingly few
studies have investigated the relative strengths and weaknesses of the plethora
of existing feature selection methods. Methods: We compare 32 feature selection
methods on 4 public gene expression datasets for breast cancer prognosis, in
terms of predictive performance, stability and functional interpretability of
the signatures they produce. Results: We observe that the feature selection
method has a significant influence on the accuracy, stability and
interpretability of signatures. Simple filter methods generally outperform more
complex embedded or wrapper methods, and ensemble feature selection has
generally no positive effect. Overall a simple Student's t-test seems to
provide the best results. Availability: Code and data are publicly available at
http://cbio.ensmp.fr/~ahaury/
- …
