9,348 research outputs found
Heat Kernel for Spin-3/2 Rarita-Schwinger Field in General Covariant Gauge
The heat kernel for the spin-3/2 Rarita-Schwinger gauge field on an arbitrary
Ricci flat space-time () is investigated in a family of covariant gauges
with one gauge parameter . The -dependent term of the kernel is
expressed by the spin-1/2 heat kernel. It is shown that the axial anomaly and
the one-loop divegence of the action are -independent, and that the
conformal anomaly has an -dependent total derivative term in
dimensions.Comment: 11 pages, latex, ITP-SB-94-3
Effect of Oscillating Landau Bandwidth on the Integer Quantum Hall Effect in a Unidirectional Lateral Superlattice
We have measured activation gaps for odd-integer quantum Hall states in a
unidirectional lateral superlattice (ULSL) -- a two-dimensional electron gas
(2DEG) subjected to a unidirectional periodic modulation of the electrostatic
potential. By comparing the activation gaps with those simultaneously measured
in the adjacent section of the same 2DEG sample without modulation, we find
that the gaps are reduced in the ULSL by an amount corresponding to the width
acquired by the Landau levels through the introduction of the modulation. The
decrement of the activation gap varies with the magnetic field following the
variation of the Landau bandwidth due to the commensurability effect. Notably,
the decrement vanishes at the flat band conditions.Comment: 7 pages, 6 figures, minor revisio
Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb
The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the
Mn-based class of Heuslers and half-Heuslers that contains several conventional
and half metallic ferromagnets, shows a peculiar stability of its magnetic
order in high magnetic fields. Density functional based studies reveal an
unusual nature of its unstable (and therefore unseen) paramagnetic state, which
for one electron less (CuMnSn, for example) would be a zero gap semiconductor
(accidentally so) between two sets of very narrow, topologically separate bands
of Mn 3d character. The extremely flat Mn 3d bands result from the environment:
Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below
the Fermi level, and the other four tetrahedrally coordinated sites are empty,
leaving chemically isolated Mn 3d states. The AFM phase can be pictured
heuristically as a self-doped CuMnSb compensated semimetal
with heavy mass electrons and light mass holes, with magnetic coupling
proceeding through Kondo and/or antiKondo coupling separately through the two
carrier types. The ratio of the linear specific heat coefficient and the
calculated Fermi level density of states indicates a large mass enhancement
, or larger if a correlated band structure is taken as the
reference
A new method for monitoring global volcanic activity
The ERTS Data Collection System makes it feasible for the first time to monitor the level of activity at widely separated volcanoes and to relay these data rapidly to one central office for analysis. While prediction of specific eruptions is still an evasive goal, early warning of a reawakening of quiescent volcanoes is now a distinct possibility. A prototypical global volcano surveillance system was established under the ERTS program. Instruments were installed in cooperation with local scientists on 15 volcanoes in Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador and Nicaragua. The sensors include 19 seismic event counters that count four different sizes of earthquakes and six biaxial borehole tiltmeters that measure ground tilt with a resolution of 1 microradian. Only seismic and tilt data are collected because these have been shown in the past to indicate most reliably the level of volcano activity at many different volcanoes. Furthermore, these parameters can be measured relatively easily with new instrumentation
Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors
Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for
sub-mm instrumentation because of the high scalability of the technology. Here
we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon
noise limited performance of a small antenna coupled MKID detector array and we
describe the relation between photon noise and MKID intrinsic
generation-recombination noise. Additionally we use the observed photon noise
to measure the optical efficiency of detectors to be 0.8+-0.2.Comment: The following article has been submitted to AP
Cosmological evolution of scalar fields and gravitino dark matter in gauge mediation at low reheating temperatures
We consider the dynamics of the supersymmetry-breaking scalar field and the
production of dark matter gravitinos via its decay in a gauge-mediated
supersymmetry breaking model with metastable vacuum. We find that the scalar
field amplitude and gravitino density are extremely sensitive to the parameters
of the hidden sector. For the case of an O'Raifeartaigh sector, we show that
the observed dark matter density can be explained by gravitinos even for low
reheating temperatures T_{R} < 10 GeV. Such low reheating temperatures may be
implied by detection of the NLSP at the LHC if its thermal freeze-out density
is in conflict with BBN.Comment: 11 pages RevTex. Extended discussion and minor corrections,
conclusions unaltered. Version to be published in JCA
Universality of transport properties of ultra-thin oxide films
We report low-temperature measurements of current-voltage characteristics for
highly conductive Nb/Al-AlOx-Nb junctions with thicknesses of the Al interlayer
ranging from 40 to 150 nm and ultra-thin barriers formed by diffusive oxidation
of the Al surface. In the superconducting state these devices have revealed a
strong subgap current leakage. Analyzing Cooper-pair and quasiparticle currents
across the devices, we conclude that the strong suppression of the subgap
resistance comparing with conventional tunnel junctions originates from a
universal bimodal distribution of transparencies across the Al-oxide barrier
proposed earlier by Schep and Bauer. We suggest a simple physical explanation
of its source in the nanometer-thick oxide films relating it to strong local
barrier-height fluctuations which are generated by oxygen vacancies in thin
aluminum oxide tunnel barriers formed by thermal oxidation.Comment: revised text and a new figur
Performance of Hybrid NbTiN-Al Microwave Kinetic Inductance Detectors as Direct Detectors for Sub-millimeter Astronomy
In the next decades millimeter and sub-mm astronomy requires large format
imaging arrays and broad-band spectrometers to complement the high spatial and
spectral resolution of the Atacama Large Millimeter/sub-millimeter Array. The
desired sensors for these instruments should have a background limited
sensitivity and a high optical efficiency and enable arrays thousands of pixels
in size. Hybrid microwave kinetic inductance detectors consisting of NbTiN and
Al have shown to satisfy these requirements. We present the second generation
hybrid NbTiN-Al MKIDs, which are photon noise limited in both phase and
amplitude readout for loading levels fW. Thanks to the
increased responsivity, the photon noise level achieved in phase allows us to
simultaneously read out approximately 8000 pixels using state-of-the-art
electronics. In addition, the choice of superconducting materials and the use
of a Si lens in combination with a planar antenna gives these resonators the
flexibility to operate within the frequency range THz. Given
these specifications, hybrid NbTiN-Al MKIDs will enable astronomically usable
kilopixel arrays for sub-mm imaging and moderate resolution spectroscopy.Comment: 7 pages, 3 figures. Presented at SPIE Astronomical Telescopes and
Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors
and Instrumentation for Astronomy VI
Climatic impact of the A.D. 1783 Asama (Japan) Eruption was minimal: Evidence from the GISP2 Ice Core
Assessing the climatic impact of the A.D. 1783 eruption of Mt. Asama, Japan, is complicated by the concurrent eruption of Laki, Iceland. Estimates of the stratospheric loading of H2SO4 for the A.D. 1108 eruption of Asama derived from the SO42− time series in the GISP2 Greenland ice core indicate a loading of about 10.4 Tg H2SO4 with a resulting stratospheric optical depth of 0.087. Assuming sulfur emissions from the 1783 eruption were only one‐third of the 1108 event yields a H2SO4 loading value of 3.5 Tg and a stratospheric optical depth of only 0.029. These results suggest minimal climatic effects in the Northern Hemisphere from the 1783 Asama eruption, thus any volcanically‐induced cooling in the mid‐1780s is probably due to the Laki eruption
- …
