9,082 research outputs found
Passive Mode-Locking of Monolithic InGaAs/AlGaAs Double Quantum Well Lasers at 42GHz Repetition Rate
Pulse trains with a 42GHz repetition rate were generated by monolithic InGaAs/AlGaAs double quantum well lasers at a wavelength of 985 [angstroms]. The cavity was electrically divided into three regions, one providing gain and the other two providing saturable absorption. The optical modulation has a depth greater than 98% and full-width at half-maximum under 6ps, and bias conditions for sustained mode-locking are determined
An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra
A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements
The Linear Boltzmann Equation as the Low Density Limit of a Random Schrodinger Equation
We study the evolution of a quantum particle interacting with a random
potential in the low density limit (Boltzmann-Grad). The phase space density of
the quantum evolution defined through the Husimi function converges weakly to a
linear Boltzmann equation with collision kernel given by the full quantum
scattering cross section.Comment: 74 pages, 4 figures, (Final version -- typos corrected
Broadband Tuning (170nm) of InGaAs Quantum Well Lasers
The wavelength tuning properties of strained InGaAs quantum well lasers using an external grating for feedback is reported. Tunable laser oscillation has been observed over a range of 170 nm, between 840 and 1010 nm, under pulsed current excitation. The optimal conditions for broadband tunability for the InGaAs lasers are different from GaAs lasers, which is attributed to a difference in spectral gain curves. Together with an optimised GaAs quantum well laser the entire region between 740 and 1010 nm is spanned
Very High Modulation Efficiency of Ultralow Threshold Current Single Quantum Well InGaAs Lasers
A record high current modulation efficiency of 5 GHz/[sqrt](mA) has been demonstrated in an ultralow threshold strained layer single quantum well InGaAs laser
Coverage-dependent adsorption sites for K/Cu(001) and Cs/Cu(001) determined by surface X-ray diffraction
Surface X-ray diffraction has been used to analyze in situ the room-temperature adsorption behaviour and the structure of K and Cs on Cu(100) at submonolayer coverages. Adsorption of K takes place in fourfold hollow sites up to coverages of about 0.25 monolayers (ML), where 1 ML corresponds to 1.53 × 1015 atoms/cm2. At higher coverages the formation of a quasi-hexagonal incommensurate adlayer is observed. In contrast, for Cs adsorption we observe from the very beginning the formation of the quasi-hexagonal structure up to the completion of the adlayer at about 0.30 ML. For K adsorption in the hollow sites we determine an adsorption height, d = 2.25(15) Å, corresponding to an effective K radius of reff = 1.6(1) Å close to the ionic radius of 1.33 Å. We do not observe a change in the effective radius as a function of coverage. For the quasi-hexagonal Cs structure we find an (average) adsorption height d = 2.94 Å corresponding to an effective radius of reff = 2.18 and 1.93 Å, for the limiting ca hollow- and bridge-site adsorption, respectively. The analysis of the superlattice reflections corresponding to the quasi-hexagonal incommensurate structures indicated that the K adlayer is strongly modulated. The first Fourier component of the substrate-induced modulation was determined to u01 = 1.29(3) Å. In contrast, for Cs/Cu(001) static modulation is much less important (u01 0.2 Å). Variation of the Cs adlayer density by changing the substrate temperature allows continuous expansion and contraction of the adsorbate unit cell. No commensurate-incommensurate transition has been observed
Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence
A new technique for determining carrier diffusion lengths by cathodoluminescence measurements is presented. The technique is extremely accurate and can be applied to a variety of structures. Ambipolar diffusion lengths are determined for GaAs quantum well material, bulk GaAs, Al0.21Ga0.79As, and Al0.37Ga0.63As. A large increase in the diffusion length is found for Al0.37Ga0.63As and is attributed to an order of magnitude increase in lifetime
- …
