1,681 research outputs found
Develop and test fuel cell powered on-site integrated total energy system
Test results are presented for a 24 cell, two sq ft (4kW) stack. This stack is a precursor to a 25kW stack that is a key milestone. Results are discussed in terms of cell performance, electrolyte management, thermal management, and reactant gas manifolding. The results obtained in preliminary testing of a 50kW methanol processing subsystem are discussed. Subcontracting activities involving application analysis for fuel cell on site integrated energy systems are updated
A Protocol for Generating Random Elements with their Probabilities
We give an AM protocol that allows the verifier to sample elements x from a
probability distribution P, which is held by the prover. If the prover is
honest, the verifier outputs (x, P(x)) with probability close to P(x). In case
the prover is dishonest, one may hope for the following guarantee: if the
verifier outputs (x, p), then the probability that the verifier outputs x is
close to p. Simple examples show that this cannot be achieved. Instead, we show
that the following weaker condition holds (in a well defined sense) on average:
If (x, p) is output, then p is an upper bound on the probability that x is
output. Our protocol yields a new transformation to turn interactive proofs
where the verifier uses private random coins into proofs with public coins. The
verifier has better running time compared to the well-known Goldwasser-Sipser
transformation (STOC, 1986). For constant-round protocols, we only lose an
arbitrarily small constant in soundness and completeness, while our public-coin
verifier calls the private-coin verifier only once
A Time-Space Tradeoff for Triangulations of Points in the Plane
In this paper, we consider time-space trade-offs for reporting a triangulation of points in the plane. The goal is to minimize the amount of working space while keeping the total running time small. We present the first multi-pass algorithm on the problem that returns the edges of a triangulation with their adjacency information. This even improves the previously best known random-access algorithm
The log-periodic-AR(1)-GARCH(1,1) model for financial crashes
This paper intends to meet recent claims for the attainment of more rigorous
statistical methodology within the econophysics literature. To this end, we
consider an econometric approach to investigate the outcomes of the
log-periodic model of price movements, which has been largely used to forecast
financial crashes. In order to accomplish reliable statistical inference for
unknown parameters, we incorporate an autoregressive dynamic and a conditional
heteroskedasticity structure in the error term of the original model, yielding
the log-periodic-AR(1)-GARCH(1,1) model. Both the original and the extended
models are fitted to financial indices of U. S. market, namely S&P500 and
NASDAQ. Our analysis reveal two main points: (i) the
log-periodic-AR(1)-GARCH(1,1) model has residuals with better statistical
properties and (ii) the estimation of the parameter concerning the time of the
financial crash has been improved.Comment: 17 pages, 4 figures, 12 tables, to appear in Europen Physical Journal
Bifurcations and Chaos in the Six-Dimensional Turbulence Model of Gledzer
The cascade-shell model of turbulence with six real variables originated by
Gledzer is studied numerically using Mathematica 5.1. Periodic, doubly-periodic
and chaotic solutions and the routes to chaos via both frequency-locking and
period-doubling are found by the Poincar\'e plot of the first mode . The
circle map on the torus is well approximated by the summation of several
sinusoidal functions. The dependence of the rotation number on the viscosity
parameter is in accordance with that of the sine-circle map. The complicated
bifurcation structure and the revival of a stable periodic solution at the
smaller viscosity parameter in the present model indicates that the turbulent
state may be very sensitive to the Reynolds number.Comment: 19 pages, 12 figures submitted to JPS
The quasi-periodic doubling cascade in the transition to weak turbulence
The quasi-periodic doubling cascade is shown to occur in the transition from
regular to weakly turbulent behaviour in simulations of incompressible
Navier-Stokes flow on a three-periodic domain. Special symmetries are imposed
on the flow field in order to reduce the computational effort. Thus we can
apply tools from dynamical systems theory such as continuation of periodic
orbits and computation of Lyapunov exponents. We propose a model ODE for the
quasi-period doubling cascade which, in a limit of a perturbation parameter to
zero, avoids resonance related problems. The cascade we observe in the
simulations is then compared to the perturbed case, in which resonances
complicate the bifurcation scenario. In particular, we compare the frequency
spectrum and the Lyapunov exponents. The perturbed model ODE is shown to be in
good agreement with the simulations of weak turbulence. The scaling of the
observed cascade is shown to resemble the unperturbed case, which is directly
related to the well known doubling cascade of periodic orbits
Stochastics theory of log-periodic patterns
We introduce an analytical model based on birth-death clustering processes to
help understanding the empirical log-periodic corrections to power-law scaling
and the finite-time singularity as reported in several domains including
rupture, earthquakes, world population and financial systems. In our
stochastics theory log-periodicities are a consequence of transient clusters
induced by an entropy-like term that may reflect the amount of cooperative
information carried by the state of a large system of different species. The
clustering completion rates for the system are assumed to be given by a simple
linear death process. The singularity at t_{o} is derived in terms of
birth-death clustering coefficients.Comment: LaTeX, 1 ps figure - To appear J. Phys. A: Math & Ge
Are Financial Crashes Predictable?
We critically review recent claims that financial crashes can be predicted
using the idea of log-periodic oscillations or by other methods inspired by the
physics of critical phenomena. In particular, the October 1997 `correction'
does not appear to be the accumulation point of a geometric series of local
minima.Comment: LaTeX, 5 pages + 1 postscript figur
Relaxing the Irrevocability Requirement for Online Graph Algorithms
Online graph problems are considered in models where the irrevocability
requirement is relaxed. Motivated by practical examples where, for example,
there is a cost associated with building a facility and no extra cost
associated with doing it later, we consider the Late Accept model, where a
request can be accepted at a later point, but any acceptance is irrevocable.
Similarly, we also consider a Late Reject model, where an accepted request can
later be rejected, but any rejection is irrevocable (this is sometimes called
preemption). Finally, we consider the Late Accept/Reject model, where late
accepts and rejects are both allowed, but any late reject is irrevocable. For
Independent Set, the Late Accept/Reject model is necessary to obtain a constant
competitive ratio, but for Vertex Cover the Late Accept model is sufficient and
for Minimum Spanning Forest the Late Reject model is sufficient. The Matching
problem has a competitive ratio of 2, but in the Late Accept/Reject model, its
competitive ratio is 3/2
Multifractality in Time Series
We apply the concepts of multifractal physics to financial time series in
order to characterize the onset of crash for the Standard & Poor's 500 stock
index x(t). It is found that within the framework of multifractality, the
"analogous" specific heat of the S&P500 discrete price index displays a
shoulder to the right of the main peak for low values of time lags. On
decreasing T, the presence of the shoulder is a consequence of the peaked,
temporal x(t+T)-x(t) fluctuations in this regime. For large time lags (T>80),
we have found that C_{q} displays typical features of a classical phase
transition at a critical point. An example of such dynamic phase transition in
a simple economic model system, based on a mapping with multifractality
phenomena in random multiplicative processes, is also presented by applying
former results obtained with a continuous probability theory for describing
scaling measures.Comment: 22 pages, Revtex, 4 ps figures - To appear J. Phys. A (2000
- …
