606 research outputs found

    Single-particle spectral function for the classical one-component plasma

    Full text link
    The spectral function for an electron one-component plasma is calculated self-consistently using the GW0 approximation for the single-particle self-energy. In this way, correlation effects which go beyond the mean-field description of the plasma are contained, i.e. the collisional damping of single-particle states, the dynamical screening of the interaction and the appearance of collective plasma modes. Secondly, a novel non-perturbative analytic solution for the on-shell GW0 self-energy as a function of momentum is presented. It reproduces the numerical data for the spectral function with a relative error of less than 10% in the regime where the Debye screening parameter is smaller than the inverse Bohr radius, kappa<1/a_B. In the limit of low density, the non-perturbative self-energy behaves as n^(1/4), whereas a perturbation expansion leads to the unphysical result of a density independent self-energy [W. Fennel and H. P. Wilfer, Ann. Phys. Lpz._32_, 265 (1974)]. The derived expression will greatly facilitate the calculation of observables in correlated plasmas (transport properties, equation of state) that need the spectral function as an input quantity. This is demonstrated for the shift of the chemical potential, which is computed from the analytical formulae and compared to the GW0-result. At a plasma temperature of 100 eV and densities below 10^21 cm^-3, both approaches deviate less than 10% from each other.Comment: 14 pages, 9 figures accepted for publication in Phys. Rev. E v2: added section V (application of presented formalism to chemical potential of the OCP

    Levels of self-consistency in the GW approximation

    Get PDF
    We perform GWGW calculations on atoms and diatomic molecules at different levels of self-consistency and investigate the effects of self-consistency on total energies, ionization potentials and on particle number conservation. We further propose a partially self-consistent GWGW scheme in which we keep the correlation part of the self-energy fixed within the self-consistency cycle. This approximation is compared to the fully self-consistent GWGW results and to the GW0G W_0 and the G0W0G_0W_0 approximations. Total energies, ionization potentials and two-electron removal energies obtained with our partially self-consistent GWGW approximation are in excellent agreement with fully self-consistent GWGW results while requiring only a fraction of the computational effort. We also find that self-consistent and partially self-consistent schemes provide ionization energies of similar quality as the G0W0G_0W_0 values but yield better total energies and energy differences.Comment: 11 pages, 3 figures, 3 table

    Cluster virial expansion for the equation of state of partially ionized hydrogen plasma

    Full text link
    We study the contribution of electron-atom interaction to the equation of state for partially ionized hydrogen plasma using the cluster-virial expansion. For the first time, we use the Beth-Uhlenbeck approach to calculate the second virial coefficient for the electron-atom (bound cluster) pair from the corresponding scattering phase-shifts and binding energies. Experimental scattering cross-sections as well as phase-shifts calculated on the basis of different pseudopotential models are used as an input for the Beth-Uhlenbeck formula. By including Pauli blocking and screening in the phase-shift calculation, we generalize the cluster-virial expansion in order to cover also near solid density plasmas. We present results for the electron-atom contribution to the virial expansion and the corresponding equation of state, i.e. pressure, composition, and chemical potential as a function of density and temperature. These results are compared with semi-empirical approaches to the thermodynamics of partially ionized plasmas. Avoiding any ill-founded input quantities, the Beth-Uhlenbeck second virial coefficient for the electron-atom interaction represents a benchmark for other, semi-empirical approaches.Comment: 16 pages, 10 figures, and 5 tables, resubmitted to PR

    REDD+ on the rocks? Conflict over forest and politics of justice in Vietnam

    Get PDF
    In Vietnam, villagers involved in a REDD+ (reduced emissions from deforestation and forest degradation) pilot protect areas with rocks which have barely a tree on them. The apparent paradox indicates how actual practices differ from general ideas about REDD+ due to ongoing conflict over forest, and how contestations over the meaning of justice are a core element in negotiations over REDD+. We explore these politics of justice by examining how the actors involved in the REDD+ pilot negotiate the particular subjects, dimensions, and authority of justice considered relevant, and show how politics of justice are implicit to practical decisions in project implementation. Contestations over the meaning of justice are an important element in the practices and processes constituting REDD+ at global, national and local levels, challenging uniform definitions of forest justice and how forests ought to be managed

    From Fatalism to Mitigation: a Conceptual Framework for Mitigating Fetal Programming of Chronic Disease by Maternal Obesity

    Get PDF
    Prenatal development is recognized as a critical period in the etiology of obesity and cardiometabolic disease. Potential strategies to reduce maternal obesity-induced risk later in life have been largely overlooked. In this paper, we first propose a conceptual framework for the role of public health and preventive medicine in mitigating the effects of fetal programming. Second, we review a small but growing body of research (through August 2015) that examines interactive effects of maternal obesity and two public health foci – diet and physical activity – in the offspring. Results of the review support the hypothesis that diet and physical activity after early life can attenuate disease susceptibility induced by maternal obesity, but human evidence is scant. Based on the review, we identify major gaps relevant for prevention research, such as characterizing the type and dose response of dietary and physical activity exposures that modify the adverse effects of maternal obesity in the offspring. Third, we discuss potential implications of interactions between maternal obesity and postnatal dietary and physical activity exposures for interventions to mitigate maternal obesity-induced risk among children. Our conceptual framework, evidence review, and future research directions offer a platform to develop, test, and implement fetal programming mitigation strategies for the current and future generations of children

    Local management of trees and woodland resources in Zimbabwe: a tenurial niche approach

    Get PDF
    This study of forest and woodland management in the rural Zimbabwe begins from two relatively new conceptual starting points: the social forest and the tenurial niche. The social forest is a concept encompassing the more traditional view of forests, taking into consideration all trees used by local people regardless of their location, density, species or size. The tenurial niche takes a more fine grained look at property relations, allowing for the consideration of the complexities that tree tenure introduces to tenure in general. Using key informant interviews, a literature review and rapid rural appraisal, this study examines the prevelance of four management mechanisms (sacred controls, pragmatic controls, the civil contract and new institutions and rules) across various tenurial niches and suggests strategies for improving management and reducing conflict in each niche

    CancerSim: A cancer simulation package for python 3

    Get PDF
    Cancer is a group of complex diseases characterized by excessive cell proliferation, invasion, anddestruction of the surrounding tissue (Vinay Kumar,2017). Its high division and mutation rateslead to excessive genetic diversity among tumour cells (intra tumour genetic heterogeneity).As a consequence, tumours can adapt very efficiently to environmental pressures, in particularto cancer therapy (Turajlic, Sottoriva, Graham, & Swanton,2019). This process is known assomatic evolution of cancer.Throughout most of its existence a tumour is inaccessible to direct observation and experi-mental evaluation through genetic sequencing of tumour samples. Therefore, computationalmodelling can be useful to study many aspects of cancer. Examples where theoretical modelscan be of great use include (i) early carcinogenesis, as lesions are clinically observable whenthey already contain millions of cells, (ii) seeding of metastases, and (iii) cancer cell dormancy(Altrock, Liu, & Michor,2015)

    Genome update for Pseudomonas fluorescens isolate SBW25

    Get PDF
    We report a genome update for Pseudomonas fluorescens isolate SBW25. The updated genome assembly, which was derived from the original isolate, is based on PacBio long-read sequence data. It shows three minor differences, compared with the previously published genome sequence. Original annotations were merged with recent automated annotations to preserve information

    Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser

    Get PDF
    We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase–Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins

    RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies

    Get PDF
    Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±
    corecore