1,187 research outputs found
Lifetime and polarization of the radiative decay of excitons, biexcitons and trions in CdSe nanocrystal quantum dots
Using the pseudopotential configuration-interaction method, we calculate the intrinsic lifetime and polarization of the radiative decay of single excitons (X), positive and negative trions (X+ and X−), and biexcitons (XX) in CdSe nanocrystal quantum dots. We investigate the effects of the inclusion of increasingly more complex many-body treatments, starting from the single-particle approach and culminating with the configuration-interaction scheme. Our configuration-interaction results for the size dependence of the single-exciton radiative lifetime at room temperature are in excellent agreement with recent experimental data. We also find the following. (i) Whereas the polarization of the bright exciton emission is always perpendicular to the hexagonal c axis, the polarization of the dark exciton switches from perpendicular to parallel to the hexagonal c axis in large dots, in agreement with experiment. (ii) The ratio of the radiative lifetimes of mono- and biexcitons (X):(XX) is ~1:1 in large dots (R=19.2 Å). This ratio increases with decreasing nanocrystal size, approaching 2 in small dots (R=10.3 Å). (iii) The calculated ratio (X+):(X−) between positive and negative trion lifetimes is close to 2 for all dot sizes considered
Comment on "Quantum Confinement and Optical Gaps in Si Nanocrystals"
We show that the method used by Ogut, Chelikowsky and Louie (Phys. Rev. Lett.
79, 1770 (1997)) to calculate the optical gap of Si nanocrystals omits an
electron-hole polarization energy. When this contribution is taken into
account, the corrected optical gap is in excellent agreement with
semi-empirical pseudopotential calculations.Comment: 3 pages, 1 figur
Strict inequalities of critical values in continuum percolation
We consider the supercritical finite-range random connection model where the
points of a homogeneous planar Poisson process are connected with
probability for a given . Performing percolation on the resulting
graph, we show that the critical probabilities for site and bond percolation
satisfy the strict inequality . We also show
that reducing the connection function strictly increases the critical
Poisson intensity. Finally, we deduce that performing a spreading
transformation on (thereby allowing connections over greater distances but
with lower probabilities, leaving average degrees unchanged) {\em strictly}
reduces the critical Poisson intensity. This is of practical relevance,
indicating that in many real networks it is in principle possible to exploit
the presence of spread-out, long range connections, to achieve connectivity at
a strictly lower density value.Comment: 38 pages, 8 figure
Impact of boundaries on fully connected random geometric networks
Many complex networks exhibit a percolation transition involving a
macroscopic connected component, with universal features largely independent of
the microscopic model and the macroscopic domain geometry. In contrast, we show
that the transition to full connectivity is strongly influenced by details of
the boundary, but observe an alternative form of universality. Our approach
correctly distinguishes connectivity properties of networks in domains with
equal bulk contributions. It also facilitates system design to promote or avoid
full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure
A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots
Excitonic spectra are calculated for free-standing, surface passivated InAs
quantum dots using atomic pseudopotentials for the single-particle states and
screened Coulomb interactions for the two-body terms. We present an analysis of
the single particle states involved in each excitation in terms of their
angular momenta and Bloch-wave parentage. We find that (i) in agreement with
other pseudopotential studies of CdSe and InP quantum dots, but in contrast to
k.p calculations, dot states wavefunction exhibit strong odd-even angular
momentum envelope function mixing (e.g. with ) and large
valence-conduction coupling. (ii) While the pseudopotential approach produced
very good agreement with experiment for free-standing, colloidal CdSe and InP
dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted
spectrum does {\em not} agree well with the measured (ensemble average over dot
sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure
one, and (2) while the spacing between the lowest excitons is reproduced, the
spacings between higher excitons is not fit well. Discrepancy (1) could result
from surface states emission. As for (2), agreement is improved when account is
taken of the finite size distribution in the experimental data. (iii) We find
that the single particle gap scales as (not ), that the
screened (unscreened) electron-hole Coulomb interaction scales as
(), and that the eccitonic gap sclaes as . These scaling
laws are different from those expected from simple models.Comment: 12 postscript figure
Predicion of charge separation in GaAs/AlAs cylindrical Russian Doll nanostructures
We have contrasted the quantum confinement of (i) multiple quantum wells of
flat GaAs and AlAs layers, i.e. (\GaAs)_{m}/(\AlAs)_n/(\GaAs)_p/(\AlAs)_q,
with (ii) ``cylindrical Russian Dolls'' -- an equivalent sequence of wells and
barriers arranged as concentric wires. Using a pseudopotential plane-wave
calculation, we identified theoretically a set of numbers ( and )
such that charge separation can exist in ``cylindrical Russian Dolls'': the CBM
is localized in the inner GaAs layer, while the VBM is localized in the outer
GaAs layer.Comment: latex, 8 page
On random flights with non-uniformly distributed directions
This paper deals with a new class of random flights defined in the real space characterized
by non-uniform probability distributions on the multidimensional sphere. These
random motions differ from similar models appeared in literature which take
directions according to the uniform law. The family of angular probability
distributions introduced in this paper depends on a parameter which
gives the level of drift of the motion. Furthermore, we assume that the number
of changes of direction performed by the random flight is fixed. The time
lengths between two consecutive changes of orientation have joint probability
distribution given by a Dirichlet density function.
The analysis of is not an easy task, because it
involves the calculation of integrals which are not always solvable. Therefore,
we analyze the random flight obtained as
projection onto the lower spaces of the original random
motion in . Then we get the probability distribution of
Although, in its general framework, the analysis of is very complicated, for some values of , we can provide
some results on the process. Indeed, for , we obtain the characteristic
function of the random flight moving in . Furthermore, by
inverting the characteristic function, we are able to give the analytic form
(up to some constants) of the probability distribution of Comment: 28 pages, 3 figure
Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots
We adopt an atomistic pseudopotential description of the electronic structure
of self-assembled, lens shaped InAs quantum dots within the ``linear
combination of bulk bands'' method. We present a detailed comparison with
experiment, including quantites such as the single particle electron and hole
energy level spacings, the excitonic band gap, the electron-electron, hole-hole
and electron hole Coulomb energies and the optical polarization anisotropy. We
find a generally good agreement, which is improved even further for a dot
composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review
Ab-initio design of perovskite alloys with predetermined properties: The case of Pb(Sc_{0.5} Nb_{0.5})O_{3}
A first-principles derived approach is combined with the inverse Monte Carlo
technique to determine the atomic orderings leading to prefixed properties in
Pb(Sc_{0.5}Nb_{0.5})O_{3} perovskite alloy. We find that some arrangements
between Sc and Nb atoms result in drastic changes with respect to the
disordered material, including ground states of new symmetries, large
enhancement of electromechanical responses, and considerable shift of the Curie
temperature. We discuss the microscopic mechanisms responsible for these
unusual effects.Comment: 5 pages with 2 postscript figures embedde
Semiconducting Monolayer Materials as a Tunable Platform for Excitonic Solar Cells
The recent advent of two-dimensional monolayer materials with tunable
optoelectronic properties and high carrier mobility offers renewed
opportunities for efficient, ultra-thin excitonic solar cells alternative to
those based on conjugated polymer and small molecule donors. Using
first-principles density functional theory and many-body calculations, we
demonstrate that monolayers of hexagonal BN and graphene (CBN) combined with
commonly used acceptors such as PCBM fullerene or semiconducting carbon
nanotubes can provide excitonic solar cells with tunable absorber gap,
donor-acceptor interface band alignment, and power conversion efficiency, as
well as novel device architectures. For the case of CBN-PCBM devices, we
predict the limit of power conversion efficiencies to be in the 10 - 20% range
depending on the CBN monolayer structure. Our results demonstrate the
possibility of using monolayer materials in tunable, efficient, polymer-free
thin-film solar cells in which unexplored exciton and carrier transport regimes
are at play.Comment: 7 pages, 5 figure
- …
