3,781 research outputs found
Exact solutions of classical scalar field equations
We give a class of exact solutions of quartic scalar field theories. These
solutions prove to be interesting as are characterized by the production of
mass contributions arising from the nonlinear terms while maintaining a
wave-like behavior. So, a quartic massless equation has a nonlinear wave
solution with a dispersion relation of a massive wave and a quartic scalar
theory gets its mass term renormalized in the dispersion relation through a
term depending on the coupling and an integration constant. When spontaneous
breaking of symmetry is considered, such wave-like solutions show how a mass
term with the wrong sign and the nonlinearity give rise to a proper dispersion
relation. These latter solutions do not change the sign maintaining the
property of the selected value of the equilibrium state. Then, we use these
solutions to obtain a quantum field theory for the case of a quartic massless
field. We get the propagator from a first order correction showing that is
consistent in the limit of a very large coupling. The spectrum of a massless
quartic scalar field theory is then provided. From this we can conclude that,
for an infinite countable number of exact classical solutions, there exist an
infinite number of equivalent quantum field theories that are trivial in the
limit of the coupling going to infinity.Comment: 7 pages, no figures. Added proof of existence of a zero mode and two
more references. Accepted for publication in Journal of Nonlinear
Mathematical Physic
Theory of dressed states in quantum optics
The dual Dyson series [M.Frasca, Phys. Rev. A {\bf 58}, 3439 (1998)], is used
to develop a general perturbative method for the study of atom-field
interaction in quantum optics. In fact, both Dyson series and its dual, through
renormalization group methods to remove secular terms from the perturbation
series, give the opportunity of a full study of the solution of the
Schr\"{o}dinger equation in different ranges of the parameters of the given
hamiltonian. In view of recent experiments with strong laser fields, this
approach seems well-suited to give a clarification and an improvement of the
applications of the dressed states as currently done through the eigenstates of
the atom-field interaction, showing that these are just the leading order of
the dual Dyson series when the Hamiltonian is expressed in the interaction
picture. In order to exploit the method at the best, a study is accomplished of
the well-known Jaynes-Cummings model in the rotating wave approximation, whose
exact solution is known, comparing the perturbative solutions obtained by the
Dyson series and its dual with the same approximations obtained by Taylor
expanding the exact solution. Finally, a full perturbative study of high-order
harmonic generation is given obtaining, through analytical expressions, a clear
account of the power spectrum using a two-level model, even if the method can
be successfully applied to a more general model that can account for ionization
too. The analysis shows that to account for the power spectrum it is needed to
go to first order in the perturbative analysis. The spectrum obtained gives a
way to measure experimentally the shift of the energy levels of the atom
interacting with the laser field by looking at the shifting of hyper-Raman
lines.Comment: Revtex, 17 page
Cooperative effects in Josephson junctions in a cavity in the strong coupling regime
We analyze the behavior of systems of two and three qubits made by Josephson
junctions, treated in the two level approximation, driven by a radiation mode
in a cavity. The regime we consider is a strong coupling one recently
experimentally reached for a single junction. Rabi oscillations are obtained
with the frequency proportional to integer order Bessel functions in the limit
of a large photon number, similarly to the case of the single qubit. A
selection rule is derived for the appearance of Rabi oscillations. A quantum
amplifier built with a large number of Josephson junctions in a cavity in the
strong coupling regime is also described.Comment: 9 pages, no figures. Version accepted for publication in Physical
Review
The Chamaeleon II low-mass star-forming region: radial velocities, elemental abundances, and accretion properties
Radial velocities, elemental abundances, and accretion properties of members
of star-forming regions (SFRs) are important for understanding star and planet
formation. While infrared observations reveal the evolutionary status of the
disk, optical spectroscopy is fundamental to acquire information on the
properties of the central star and on the accretion characteristics. 2MASS
archive data and the Spitzer c2d survey of the Chamaeleon II dark cloud have
provided disk properties of a large number of young stars. We complement these
data with spectroscopy with the aim of providing physical stellar parameters
and accretion properties. We use FLAMES/UVES+GIRAFFE observations of 40 members
of Cha II to measure radial velocities through cross-correlation technique, Li
abundances by means of curves of growth, and for a suitable star elemental
abundances of Fe, Al, Si, Ca, Ti, and Ni using the code MOOG. From the
equivalent widths of the Halpha, Hbeta, and the HeI-5876, 6678, 7065 Angstrom
emission lines, we estimate the mass accretion rates, dMacc/dt, for all the
objects. We derive a radial velocity distribution for the Cha II stars
(=11.4+-2.0 km/s). We find dMacc/dt prop. to Mstar^1.3 and to Age^(-0.82)
in the 0.1-1.0 Msun mass regime, and a mean dMacc/dt for Cha II of ~7*10^(-10)
Msun/yr. We also establish a relationship between the HeI-7065 Angstrom line
emission and the accretion luminosity. The radial velocity distributions of
stars and gas in Cha II are consistent. The spread in dMacc/dt at a given
stellar mass is about one order of magnitude and can not be ascribed entirely
to short timescale variability. Analyzing the relation between dMacc/dt and the
colors in Spitzer and 2MASS bands, we find indications that the inner disk
changes from optically thick to optically thin at dMacc/dt~10^(-10) Msun/yr.
Finally, the disk fraction is consistent with the age of Cha II.Comment: 21 Pages, 15 Figures, 7 Tables. Accepted for publication in Astronomy
and Astrophysics. Abstract shortene
Photospheric and chromospheric activity in four young solar-type stars
We present a photometric and spectroscopic study of four G-K dwarfs, namely
HD 166, epsilon Eri, chi1 Ori and kappa1 Cet. In three cases, we find a clear
spatial association between photospheric and chromospheric active regions. For
chi1 Ori we do not find appreciable variations of photospheric temperature, and
chromospheric Halpha emission. We applied a spot/plage model to the observed
rotational modulation of temperature and flux to derive spot/plage parameters
and to reconstruct a rough three-dimensional map of the outer atmosphere of
kappa1 Cet, HD 166 and epsilon Eri.Comment: 12 pages, 3 tables, 9 figures. Submitted to Ap
Investigation of DC-8 nacelle modifications to reduce fan-compressor noise in airport communities. Part 2 - Design studies and duct-lining investigations, May 1967 - October 1969
Modifications to reduce fan-compressor noise level of DC-8 aircraft - Part
Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks: Insights from Rössler Systems, Electronic Chaotic Oscillators, Model and Biological Neurons
Natural and engineered networks, such as interconnected neurons, ecological and social networks, coupled oscillators, wireless terminals and power loads, are characterized by an appreciable heterogeneity in the local connectivity around each node. For instance, in both elementary structures such as stars and complex graphs having scale-free topology, a minority of elements are linked to the rest of the network disproportionately strongly. While the effect of the arrangement of structural connections on the emergent synchronization pattern has been studied extensively, considerably less is known about its influence on the temporal dynamics unfolding within each node. Here, we present a comprehensive investigation across diverse simulated and experimental systems, encompassing star and complex networks of Rössler systems, coupled hysteresis-based electronic oscillators, microcircuits of leaky integrate-and-fire model neurons, and finally recordings from in-vitro cultures of spontaneously-growing neuronal networks. We systematically consider a range of dynamical measures, including the correlation dimension, nonlinear prediction error, permutation entropy, and other information-theoretical indices. The empirical evidence gathered reveals that under situations of weak synchronization, wherein rather than a collective behavior one observes significantly differentiated dynamics, denser connectivity tends to locally promote the emergence of stronger signatures of nonlinear dynamics. In deterministic systems, transition to chaos and generation of higher-dimensional signals were observed; however, when the coupling is stronger, this relationship may be lost or even inverted. In systems with a strong stochastic component, the generation of more temporally-organized activity could be induced. These observations have many potential implications across diverse fields of basic and applied science, for example, in the design of distributed sensing systems based on wireless coupled oscillators, in network identification and control, as well as in the interpretation of neuroscientific and other dynamical data
Multitask Hopfield Networks
Multitask algorithms typically use task similarity information as a bias to
speed up and improve the performance of learning processes. Tasks are learned
jointly, sharing information across them, in order to construct models more
accurate than those learned separately over single tasks. In this contribution,
we present the first multitask model, to our knowledge, based on Hopfield
Networks (HNs), named HoMTask. We show that by appropriately building a unique
HN embedding all tasks, a more robust and effective classification model can be
learned. HoMTask is a transductive semi-supervised parametric HN, that
minimizes an energy function extended to all nodes and to all tasks under
study. We provide theoretical evidence that the optimal parameters
automatically estimated by HoMTask make coherent the model itself with the
prior knowledge (connection weights and node labels). The convergence
properties of HNs are preserved, and the fixed point reached by the network
dynamics gives rise to the prediction of unlabeled nodes. The proposed model
improves the classification abilities of singletask HNs on a preliminary
benchmark comparison, and achieves competitive performance with
state-of-the-art semi-supervised graph-based algorithms.Comment: 16 pages, 1 figure
PG 1613+426: a new sdB pulsator
We report the detection of short period oscillations in the hot subdwarf B
(sdB) star PG 1613+426 from time-series photometry carried out with the 91-cm
Cassegrain telescope of the Catania Astrophysical Observatory. This star, which
is brighter than the average of the presently known sdB pulsators, with B =
14.14 mag, has and , its position
is near the hot end of the sdB instability strip, and it is a pulsator with a
well observed peak in the power spectrum at . This star
seems to be well suited for high precision measurements, which could detect a
possible multi-mode pulsation behaviourComment: 3 pages, 4 figures. to appear on A&
- …
