149 research outputs found

    Adoption of blockchain as a step forward in orthopedic practice

    Get PDF
    blockchain technology has gained popularity since the invention of bitcoin in 2008. It offers a decentralized and secure system for managing and protecting data. In the healthcare sector, where data protection and patient privacy are crucial, blockchain has the potential to revolutionize various aspects, including patient data management, orthopedic registries, medical imaging, research data, and the integration of Internet of things (IoT) devices. this manuscript explores the applications of blockchain in orthopedics and highlights its benefits. furthermore, the combination of blockchain with artificial intelligence (AI), machine learning, and deep learning can enable more accurate diagnoses and treatment recommendations. aI algorithms can learn from large datasets stored on the blockchain, leading to advancements in automated clinical decision-making. overall, blockchain technology has the potential to enhance data security, interoperability, and collaboration in orthopedics. while there are challenges to overcome, such as adoption barriers and data sharing willingness, the benefits offered by blockchain make it a promising innovation for the field

    Advances in research on the use of biochar in soil for remediation: a review

    Get PDF
    Purpose: Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a readily-available material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants.  Materials and methods: Bibliometric analysis was carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e., As and Pb) and three organic classes (i.e., sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively), while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides, and hydrocarbons, respectively.  Results and discussion: The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanol-water partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biochar’s suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield, and mine soils) at different pH levels (4–5.5) and contaminant concentrations ( 50 mg kg−1).  Conclusions: Research on biochar has grown over the years with significant focus on its properties, and how these affect biochar’s ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist

    THE EFFECT OF WATER REDUCTION IN KRAFT PULP WASHING IN ECF BLEACHING

    Full text link
    ABSTRACT The main objective of this work was to study the technical viability of using the cellulose bleaching effluent, at several stages of the process, seeking fresh water reduction in pulp washing, and evaluating its effect on pulp quality. Eucalyptus spp. industrial cellulosic pulp with oxygen was used in this experiment. The same bleaching sequence D(E+P)DP was performed ten times, under the same conditions (temperature, consistency and time). Counter current washing was used in the bleaching stages, and each sequence was carried out with different washing factors: 9, 6, 3, 0 m3 of distilled water/ton of pulp, trying to reach brightness of 92 ± 0,5% ISO. The ten sequences sought to achieve the stability of the effluent organic load, measured by the chemical oxygen demand (COD). Then, the COD results were compared to the brightness ones from the bleached pulp. The evaluated results from the ten sequences and four different washings showed an increasing in COD due to the organic load accumulation, resulting from the reuse of effluent from previous sequences. This COD increasing provided the lower brightness results during the cycles, besides the water reduction, evidencing the necessity of washing between bleaching stages. In this study, the obtained result for the pulp washing up to 3m3/t was tolerable and even recommended. On the other hand, the pulp without any washing (0m3/t), due to the lack of enough brightness, it is commercially unviable

    The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy

    Get PDF
    In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1. Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG antibodies and sensory neuropathy, which closely resembles the human disease. These animal models might help to understand the disease mechanism and lead to more specific therapeutic strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be considered as the initial key step for development of disease

    Influence of pyrolysis temperature and production unit on formation of selected PAHs, oxy-PAHs, N-PACs, PCDDs, and PCDFs in biochar - A screening study

    Get PDF
    The influence of reactor type and operating conditions of the pyrolysis unit on the final concentration of toxic contaminants in biochar remains unclear. Therefore, we determined the concentrations of polycyclic aromatic hydrocarbons (PAHs), oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs), nitrogen-containing polycyclic aromatic compounds (N-PACs), polychlorinated dibenzo-p-dioxins (PCDDs), and dibenzofurans (PCDFs) in biochars produced from three different feedstocks (softwood, wheat straw, and anaerobic digestate). Different scaled pyrolysis units (one batch and two continuous units) at two different temperatures (550 and 700 degrees C) were considered. The results revealed that the type of biomass had a significant influence on the PAH, oxy-PAH, and N-PAC content of the biochars. The configuration and type of the pyrolysis unit influenced only the wheat straw pyrolyzed at 550 degrees C. PCDDs and PCDFs occurred at very low levels in the biochars. In terms of PAH, PCDD, and PCDF content, the biochars assessed in this study represent a low risk to the environment, regardless of the temperature and type and size of the pyrolysis unit.Correction: Weidemann, E., Buss, W., Edo, M. et al. Environ Sci Pollut Res (2018) 25: 3941. https://doi.org/10.1007/s11356-017-0804-6Bio4Energ

    The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications

    Get PDF
    ABSTRACT Vegetable oils present important pharmacological properties, which gained ground in the pharmaceutical field. Its encapsulation in nanoemulsions is considered a promising strategy to facilitate the applicability of these natural compounds and to potentiate the actions. These formulations offer several advantages for topical and systemic delivery of cosmetic and pharmaceutical agents including controlled droplet size, protection of the vegetable oil to photo, thermal and volatilization instability and ability to dissolve and stabilize lipophilic drugs. For these reasons, the aim of this review is to report on some characteristics, preparation methods, applications and especially analyze recent research available in the literature concerning the use of vegetable oils with therapeutic characteristics as lipid core in nanoemulsions, specially from Brazilian flora, such as babassu (Orbignya oleifera), aroeira (Schinus molle L.), andiroba (Carapa guaianiensis), casca-de-anta (Drimys brasiliensis Miers), sucupira (Pterodon emarginatus Vogel) and carqueja doce (Stenachaenium megapotamicum) oils

    Carnitine, carnitine acyltransferases, and rat brain function

    No full text
    The concentrations of free, short chain, and long chain acylcarnitines and the enzyme activities of carnitine acetyltransferase (CAT) and carnitine palmityltransferase (CPT) were studied in different rat brain regions. The fate of tritium-labeled carnitine was studied in different brain regions in vivo after i.p. injection in 3-month-old Sprague-Dawley rats. The tritium counts were particularly high in the hypothalamic region. At 24 h after hydrocortisone injection, a significant increase in counts was observed in the hypothalamus (P < 0.01). A high concentration of total carnitine was found in the hypothalamus (4.00 nmol/mg noncollagen protein) and in other regions such as the spinal cord (1.29 nmol/mg noncollagen protein), cerebellum (1.19), and olfactory tracts (0.66) carnitine concentration was much lower. Carnitine content was proportional to CPT, an inner mitochondrial enzyme. The activity of the enzyme CAT was found to be high in rat hippocampus and hypothalamus. This enzyme in brain may be involved in the transport of acyl groups outside the mitochondria and in the regulation of pyruvate utilization, contributing to acetylcholine synthesis or regulation. \ua9 1982
    corecore