25 research outputs found

    Neuropeptidomic Components Generated by Proteomic Functions in Secretory Vesicles for Cell–Cell Communication

    Get PDF
    Diverse neuropeptides participate in cell–cell communication to coordinate neuronal and endocrine regulation of physiological processes in health and disease. Neuropeptides are short peptides ranging in length from ~3 to 40 amino acid residues that are involved in biological functions of pain, stress, obesity, hypertension, mental disorders, cancer, and numerous health conditions. The unique neuropeptide sequences define their specific biological actions. Significantly, this review article discusses how the neuropeptide field is at the crest of expanding knowledge gained from mass-spectrometry-based neuropeptidomic studies, combined with proteomic analyses for understanding the biosynthesis of neuropeptidomes. The ongoing expansion in neuropeptide diversity lies in the unbiased and global mass-spectrometry-based approaches for identification and quantitation of peptides. Current mass spectrometry technology allows definition of neuropeptide amino acid sequence structures, profiling of multiple neuropeptides in normal and disease conditions, and quantitative peptide measures in biomarker applications to monitor therapeutic drug efficacies. Complementary proteomic studies of neuropeptide secretory vesicles provide valuable insight into the protein processes utilized for neuropeptide production, storage, and secretion. Furthermore, ongoing research in developing new computational tools will facilitate advancements in mass-spectrometry-based identification of small peptides. Knowledge of the entire repertoire of neuropeptides that regulate physiological systems will provide novel insight into regulatory mechanisms in health, disease, and therapeutics

    A semaphorin code defines subpopulations of spinal motor neurons during mouse development

    No full text
    Abstract In the spinal cord, motor neurons (MNs) with similar muscle targets and sensory inputs are grouped together into motor pools. To date, relatively little is known about the molecular mechanisms that control the establishment of pool-specific circuitry. Semaphorins, a large family of secreted and cell surface proteins, are important mediators of developmental processes such as axon guidance and cell migration. Here, we used mRNA in situ hybridization to study the expression patterns of semaphorins and their receptors, neuropilins and plexins, in the embryonic mouse spinal cord. Our data show that semaphorins and their receptors are differentially expressed in MNs that lie in distinct locations within the spinal cord. Furthermore, we report a combinatorial expression of class 3 (secreted) semaphorins and their receptors that characterizes distinct motor pools within the brachial and lumbar spinal cord. Finally, we found that a secreted semaphorin, Sema3A, elicits differential collapse responses in topologically distinct subpopulations of spinal MNs. These findings lead us to propose that semaphorins and their receptors might play important roles in the sorting of motor pools and the patterning of their afferent and efferent projections

    Proteomics of Dense Core Secretory Vesicles Reveal Distinct Protein Categories for Secretion of Neuroeffectors for Cell−Cell Communication

    No full text
    Regulated secretion of neurotransmitters and neurohumoral factors from dense core secretory vesicles provides essential neuroeffectors for cell−cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell−cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoral factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 proteins in the soluble fraction and 384 membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell−cell communication in health and disease

    Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems

    No full text
    Neuropeptides regulate intercellular signaling among cells of the central brain and peripheral nervous systems, and the endocrine system. Diverse neuropeptides of distinct primary sequences of various lengths, often with post-translational modifications, coordinate and integrate regulation of physiological functions. Mass spectrometry-based analyses of the diverse neuropeptide structures in neuropeptidomics research is necessary to define the full complement of neuropeptide signaling molecules. Human neuropeptidomics has notable importance in defining normal and dysfunctional neuropeptide signaling in human health and disease. Neuropeptidomics has great potential for expansion in translational research opportunities for defining neuropeptide mechanisms of human diseases, providing novel neuropeptide drug targets for drug discovery, and monitoring neuropeptides as biomarkers of drug responses. In consideration of the high impact of human neuropeptidomics for health, an observed gap in this discipline is the few published articles in human neuropeptidomics compared to, for example, human proteomics and related mass spectrometry disciplines. Focus on human neuropeptidomics will advance new knowledge of the complex neuropeptide signaling networks participating in the fine control of neuroendocrine systems. This commentary review article discusses several human neuropeptidomics accomplishments that illustrate the rapidly expanding diversity of neuropeptides generated by protease processing of pro-neuropeptide precursors occurring within the secretory vesicle proteome. Of particular interest is the finding that human-specific cathepsin V participates in producing enkephalin and likely other neuropeptides, indicating unique proteolytic mechanisms for generating human neuropeptides. The field of human neuropeptidomics has great promise to solve new mechanisms in disease conditions, leading to new drug targets and therapeutic agents for human diseases
    corecore