14 research outputs found
A comparative biochemical and pathological evaluation of brain samples from knock-in murine models of Gaucher disease
Gaucher disease (GD) is a lysosomal storage disorder stemming from biallelic mutations i
A Dutch guideline for the treatment of scoliosis in neuromuscular disorders
<p>Abstract</p> <p>Background</p> <p>Children with neuromuscular disorders with a progressive muscle weakness such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy frequently develop a progressive scoliosis. A severe scoliosis compromises respiratory function and makes sitting more difficult. Spinal surgery is considered the primary treatment option for correcting severe scoliosis in neuromuscular disorders. Surgery in this population requires a multidisciplinary approach, careful planning, dedicated surgical procedures, and specialized after care.</p> <p>Methods</p> <p>The guideline is based on scientific evidence and expert opinions. A multidisciplinary working group representing experts from all relevant specialties performed the research. A literature search was conducted to collect scientific evidence in answer to specific questions posed by the working group. Literature was classified according to the level of evidence.</p> <p>Results</p> <p>For most aspects of the treatment scientific evidence is scarce and only low level cohort studies were found. Nevertheless, a high degree of consensus was reached about the management of patients with scoliosis in neuromuscular disorders. This was translated into a set of recommendations, which are now officially accepted as a general guideline in the Netherlands.</p> <p>Conclusion</p> <p>In order to optimize the treatment for scoliosis in neuromuscular disorders a Dutch guideline has been composed. This evidence-based, multidisciplinary guideline addresses conservative treatment, the preoperative, perioperative, and postoperative care of scoliosis in neuromuscular disorders.</p
Clinical features of children and adults with a muscular dystrophy using powered indoor/outdoor wheelchairs (EPIOCs): disease features, comorbidities and complications of disability.
Purpose: To describe the clinical features of electric powered indoor/outdoor wheelchair users with a muscular dystrophy, likely to influence optimal prescription; reflecting features of muscular dystrophies, conditions secondary to disability and comorbidities impacting on equipment provision. Methods: cross-sectional retrospective case note review of recipients of electric powered indoor/outdoor wheelchairs provided by a specialist regional wheelchair service. Data on demography, diagnostic/clinical and wheelchair prescription were systematically extracted. Results: Fifty-one men and 14 women, mean age 23.7 (range 10-67, sd 12.95) years, were studied. Forty had Duchenne muscular dystrophy, 22 had other forms of muscular dystrophy and three were unclassified. Twenty-seven were aged under 19. Notable clinical features included problematic pain (10), cardiomyopathy (5) and ventilatory failure (4). Features related to disability were (kypho)scoliosis (20) and oedema/cellulitis (3) whilst comorbidities included back pain (5). Comparison of younger with older users revealed younger users had more features of muscular dystrophy affecting electric powered chair provision (56%) whilst older users had more comorbidity (37%). Tilt-in-space was prescribed for 81% of users, specialised seating for 55% and complex controls for 16%. Conclusions: Muscular dystrophy users were prescribed electric powered indoor/outdoor chairs with many additional features reflecting the consequences of profound muscle weakness. In addition to facilitating independence and participation, electric powered indoor/outdoor chairs have major therapeutic benefits
Glucosamine and chondroitin sulfate supplementation to treat symptomatic disc degeneration: Biochemical rationale and case report
BACKGROUND: Glucosamine and chondroitin sulfate preparations are widely used as food supplements against osteoarthritis, but critics are skeptical about their efficacy, because of the lack of convincing clinical trials and a reasonable scientific rationale for the use of these nutraceuticals. Most trials were on osteoarthritis of the knee, while virtually no documentation exists on spinal disc degeneration. The purpose of this article is to highlight the potential of these food additives against cartilage degeneration in general, and against symptomatic spinal disc degeneration in particular, as is illustrated by a case report. The water content of the intervertebral disc is a reliable measure of its degeneration/ regeneration status, and can be objectively determined by Magnetic Resonance Imaging (MRI) signals. CASE PRESENTATION: Oral intake of glucosamine and chondroitin sulfate for two years associated with disk recovery (brightening of MRI signal) in a case of symptomatic spinal disc degeneration. We provide a biochemical explanation for the possible efficacy of these nutraceuticals. They are bioavailable to cartilage chondrocytes, may stimulate the biosynthesis and inhibit the breakdown of their extracellular matrix proteoglycans. CONCLUSION: The case suggests that long-term glucosamine and chondroitin sulfate intake may counteract symptomatic spinal disc degeneration, particularly at an early stage. However, definite proof requires well-conducted clinical trials with these food supplements, in which disc de-/regeneration can be objectively determined by MRI. A number of biochemical reasons (that mechanistically need to be further resolved) explain why these agents may have cartilage structure- and symptom-modifying effects, suggesting their therapeutic efficacy against osteoarthritis in general
Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA
Neuropathological Features of Gaucher Disease and Gaucher Disease with Parkinsonism
Deficient acid β-glucocerebrosidase activity due to biallelic mutations in GBA1 results in Gaucher disease (GD). Patients with this lysosomal storage disorder exhibit a wide range of associated manifestations, spanning from virtually asymptomatic adults to infants with severe neurodegeneration. While type 1 GD (GD1) is considered non-neuronopathic, a small subset of patients develop parkinsonian features. Variants in GBA1 are also an important risk factor for several common Lewy body disorders (LBDs). Neuropathological examinations of patients with GD, including those who developed LBDs, are rare. GD primarily affects macrophages, and perivascular infiltration of Gaucher macrophages is the most common neuropathologic finding. However, the frequency of these clusters and the affected anatomical region varies. GD affects astrocytes, and, in neuronopathic GD, neurons in cerebral cortical layers 3 and 5, layer 4b of the calcarine cortex, and hippocampal regions CA2–4. In addition, several reports describe selective degeneration of the cerebellar dentate nucleus in chronic neuronopathic GD. GD1 is characterized by astrogliosis without prominent neuronal loss. In GD-LBD, widespread Lewy body pathology is seen, often involving hippocampal regions CA2–4. Additional neuropathological examinations in GD are sorely needed to clarify disease-specific patterns and elucidate causative mechanisms relevant to GD, and potentially to more common neurodegenerative diseases
Neuropathological Features of Gaucher Disease and Gaucher Disease with Parkinsonism
Deficient acid β-glucocerebrosidase activity due to biallelic mutations in GBA1 results in Gaucher disease (GD). Patients with this lysosomal storage disorder exhibit a wide range of associated manifestations, spanning from virtually asymptomatic adults to infants with severe neurodegeneration. While type 1 GD (GD1) is considered non-neuronopathic, a small subset of patients develop parkinsonian features. Variants in GBA1 are also an important risk factor for several common Lewy body disorders (LBDs). Neuropathological examinations of patients with GD, including those who developed LBDs, are rare. GD primarily affects macrophages, and perivascular infiltration of Gaucher macrophages is the most common neuropathologic finding. However, the frequency of these clusters and the affected anatomical region varies. GD affects astrocytes, and, in neuronopathic GD, neurons in cerebral cortical layers 3 and 5, layer 4b of the calcarine cortex, and hippocampal regions CA2–4. In addition, several reports describe selective degeneration of the cerebellar dentate nucleus in chronic neuronopathic GD. GD1 is characterized by astrogliosis without prominent neuronal loss. In GD-LBD, widespread Lewy body pathology is seen, often involving hippocampal regions CA2–4. Additional neuropathological examinations in GD are sorely needed to clarify disease-specific patterns and elucidate causative mechanisms relevant to GD, and potentially to more common neurodegenerative diseases.</jats:p
