889 research outputs found
Mangroves enhance the biomass of coral reef fish communities in the Caribbean
Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs
Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries
The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs
Therapeutic suggestion helps to cut back on drug intake for mechanically ventilated patients in intensive care unit
Research was conducted on ventilated patients treated in an intensive care unit (ICU) under identical circumstances; patients were divided into two groups (subsequently proved statistically identical as to age and Simplified Acute Physiology Score II [SAPS II]). One group was treated with positive suggestions for 15-20 min a day based on a predetermined scheme, but tailored to the individual patient, while the control group received no auxiliary psychological treatment. Our goal was to test the effects of positive communication in this special clinical situation. In this section of the research, the subsequent data collection was aimed to reveal whether any change in drug need could be demonstrated upon the influence of suggestions as compared to the control group. Owing to the strict recruitment criteria, a relatively small sample (suggestion group n = 15, control group n = 10) was available during the approximately nine-month period of research. As an outcome of suggestions, there was a significant drop in benzodiazepine (p < 0.005), opioid (p < 0.001), and the α2-agonist (p < 0.05) intake. All this justifies the presence of therapeutic suggestions among the therapies used in ICUs. However, repeating the trial on a larger sample of patients would be recommended. © 2013 Akadémiai Kiadó, Budapest
Recommended from our members
Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA
Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study
The dynamics of pigment-pigment and pigment-protein interactions in
light-harvesting complexes is studied with a novel approach which combines
molecular dynamics (MD) simulations with quantum chemistry (QC) calculations.
The MD simulations of an LH-II complex, solvated and embedded in a lipid
bilayer at physiological conditions (with total system size of 87,055 atoms)
revealed a pathway of a water molecule into the B800 binding site, as well as
increased dimerization within the B850 BChl ring, as compared to the
dimerization found for the crystal structure. The fluctuations of pigment (B850
BChl) excitation energies, as a function of time, were determined via ab initio
QC calculations based on the geometries that emerged from the MD simulations.
From the results of these calculations we constructed a time-dependent
Hamiltonian of the B850 exciton system from which we determined the linear
absorption spectrum. Finally, a polaron model is introduced to describe quantum
mechanically both the excitonic and vibrational (phonon) degrees of freedom.
The exciton-phonon coupling that enters into the polaron model, and the
corresponding phonon spectral function are derived from the MD/QC simulations.
It is demonstrated that, in the framework of the polaron model, the absorption
spectrum of the B850 excitons can be calculated from the autocorrelation
function of the excitation energies of individual BChls, which is readily
available from the combined MD/QC simulations. The obtained result is in good
agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF
file of the paper is available at
http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
Nuclear DNA content variation in life history phases of the Bonnemaisoniaceae (Rhodophyta)
Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome
Annual and seasonal movements of migrating short-tailed shearwaters reflect environmental variation in sub-Arctic and Arctic waters
The marine ecosystems of the Bering Sea and adjacent southern Chukchi Sea are experiencing rapid changes due to recent reductions in sea ice. Short-tailed shearwaters Puffinus tenuirostris visit this region in huge numbers between the boreal summer and autumn during non-breeding season, and represent one of the dominant top predators. To understand the implications for this species of ongoing environmental change in the Pacific sub-Arctic and Arctic seas, we tracked the migratory movements of 19 and 24 birds in 2010 and 2011, respectively, using light-level geolocators. In both years, tracked birds occupied the western (Okhotsk Sea and Kuril Islands) and eastern (southeast Bering Sea) North Pacific from May to July. In August–September of 2010, but not 2011, a substantial proportion (68 % of the tracked individuals in 2010 compared to 38 % in 2011) moved through the Bering Strait to feed in the Chukchi Sea. Based on the correlation with oceanographic variables, the probability of shearwater occurrence was highest in waters with sea surface temperatures (SSTs) of 8–10 °C over shallow depths. Furthermore, shearwaters spent more time flying when SST was warmer than 9 °C, suggesting increased search effort for prey. We hypothesized that the northward shift in the distribution of shearwaters may have been related to temperature-driven changes in the abundance of their dominant prey, krill (Euphausiacea), as the timing of krill spawning coincides with the seasonal increase in water temperature. Our results indicate a flexible response of foraging birds to ongoing changes in the sub-Arctic and Arctic ecosystems
Monitoring of post-match fatigue in professional soccer: Welcome to the real world
Participation in soccer match-play leads to acute and transient subjective, biochemical, metabolic and physical disturbances in players over subsequent hours and days. Inadequate time for rest and regeneration between matches can expose players to the risk of training and competing whilst not entirely recovered. In professional soccer, contemporary competitive schedules can require teams to compete in-excess of 60 matches over the course of the season while periods of fixture congestion occur prompting much attention from researchers and practitioners to the monitoring of fatigue and readiness to play. A comprehensive body of research has investigated post-match acute and residual fatigue responses. Yet the relevance of the research for professional soccer contexts is debatable notably in relation to the study populations and designs employed. Monitoring can indeed be invasive, expensive, time-inefficient and difficult to perform routinely and simultaneously in a large squad of regularly competing players. Uncertainty also exists regarding the meaningfulness and interpretation of changes in fatigue response values and their functional relevance, and practical applicability in the field. The real-world need and cost-benefit of monitoring must be carefully weighed up. In relation to professional soccer contexts, this opinion paper intends to: 1) debate the need for PMF monitoring, 2) critique the real-world relevance of the current research literature, 3) discuss the practical burden relating to measurement tools and protocols and the collection, interpretation and application of data in the field, and, 4) propose future research perspectives
Dynamics and nucleation of dislocations in crystals
Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly
found in low-metallicity, star-forming dwarf galaxies. Here we identify
Gaia17biu/SN 2017egm as an SLSN-I occurring in a "normal" spiral galaxy (NGC
3191) in terms of stellar mass (several times 10^10 M_sun) and metallicity
(roughly Solar). At redshift z=0.031, Gaia17biu is also the lowest redshift
SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf
galaxies of similar redshift suggests that metallicity is likely less important
to the production of SLSNe-I than previously believed. With the smallest
distance and highest apparent brightness for an SLSN-I, we are able to study
Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical
color is similar to that of Gaia16apd and among the bluest observed for an
SLSN-I while its peak luminosity (M_g = -21 mag) is substantially lower than
Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we
identify several new spectroscopic features that may help to probe the
properties of these enigmatic explosions. We detect polarization at the ~0.5%
level that is not strongly dependent on wavelength, suggesting a modest, global
departure from spherical symmetry. In addition, we put the tightest upper limit
yet on the radio luminosity of an SLSN-I with <5.4x10^26 erg/s/Hz (at 10 GHz),
which is almost a factor of 40 better than previous upper limits and one of the
few measured at an early stage in the evolution of an SLSN-I. This limit
largely rules out an association of this SLSNe-I with known populations of
gamma-ray burst (GRB) like central engines.Comment: Accepted for publication in ApJ. Ancillary ASCII tables added:
TRL.txt -- blackbody temperature, radius and luminosity; uvw2uvm2uvw1uvu.txt
-- UV photometry; BgVri.txt -- optical photometry; zJHK.txt -- NIR photometr
- …
