4,866 research outputs found
Microwave method for high-frequency properties of graphene
Graphene is a remarkable material, which is yet to make the transition from unique laboratory phenomenon to useful industrial material. One missing element in the development process is a quick method of quality control of the electrical properties of graphene which may be applied in, or close to, the graphene growth process on an industrial scale. In this study, the authors describe a non-contact method using microwave resonance which potentially solves this problem. They describe the technique, consider its limitations and accuracy and suggest how the method may have future take up.UK NMS Programme, the EU EMRP project ‘GraphOhm’ and ‘MetNEMS’. The EMRP (European Metrology Research Programme
Direct measurement of penetration length in ultra-thin and/or mesoscopic superconducting structures
We describe a method for direct measurement of the magnetic penetration
length in thin (10 - 100 nm) superconducting structures having overall
dimensions in the range 1 to 100 micrometers. The method is applicable for
broadband magnetic fields from dc to MHz frequencies.Comment: Accepted by Journal of Applied P:hysics (Jun 2006).5 pages, 5 figure
Fabrication and analogue applications of nanoSQUIDs using Dayem bridge junctions
We report here recent work at the U.K. National Physical Laboratory on developing nanoscale SQUIDs using Dayem bridge Josephson junctions. The advantages are simplicity of fabrication, exceptional low-noise performance, toward the quantum limit, and a range of novel applications. Focused ion beam patterned Nb SQUID, possessing exceptionally low noise (∼200 nΦ0/Hz1/2 above 1 kHz), and operating above 4.2 K can be applied to measurement of nanoscale magnetic objects or coupled to nanoelectromechanical resonators, as well as single particle detection of photons, protons, and ions. The limited operating temperature range may be extended by exposing the Dayem bridges to carefully controlled ion beam implantation, leading to nonreversible changes in junction transition temperature.The work reported here was supported in part by the EMRP projects ‘MetNEMS’ NEW-08 and ‘BioQUART’SIB-06. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union
A Randomized Depression Prevention Trial Comparing Interpersonal Psychotherapy—Adolescent Skills Training To Group Counseling In Schools
Given the rise in depression disorders in adolescence, it is important to develop and study depression prevention programs for this age group. The current study examined the efficacy of Interpersonal Psychotherapy-Adolescent Skills Training (IPT-AST), a group prevention program for adolescent depression, in comparison to group programs that are typically delivered in school settings. In this indicated prevention trial, 186 adolescents with elevated depression symptoms were randomized to receive IPT-AST delivered by research staff or group counseling (GC) delivered by school counselors. Hierarchical linear modeling examined differences in rates of change in depressive symptoms and overall functioning from baseline to the 6-month follow-up assessment. Cox regression compared rates of depression diagnoses. Adolescents in IPT-AST showed significantly greater improvements in self-reported depressive symptoms and evaluator-rated overall functioning than GC adolescents from baseline to the 6-month follow-up. However, there were no significant differences between the two conditions in onset of depression diagnoses. Although both intervention conditions demonstrated significant improvements in depressive symptoms and overall functioning, results indicate that IPT-AST has modest benefits over groups run by school counselors which were matched on frequency and duration of sessions. In particular, IPT-AST outperformed GC in reduction of depressive symptoms and improvements in overall functioning. These findings point to the clinical utility of this depression prevention program, at least in the short-term. Additional follow-up is needed to determine the long-term effects of IPT-AST, relative to GC, particularly in preventing depression onset
Making meaning in muddy waters: representing complexity through community based storytelling
Internationally, storytelling has been used with many diverse communities. This paper compares the use of storytelling as a participatory art form within a community development project and a community and healthy living centre in the United Kingdom. Both the project and the centre regard storytelling activities as ‘inclusionary’ forms of intervention. However, the discourse of social inclusion rarely acknowledges the subtle psychosocial processes that are involved in participatory storytelling. This paper discusses such processes and examines some methodological implications of researching storytelling. It asks what contribution storytelling can make towards authentic representation of individual and community voices
Novel methods of fabrication and metrology of superconducting nanostructures
As metrology extends toward the nanoscale, a number of potential applications and new challenges arise. By combining photolithography with focused ion beam and/or electron beam methods, superconducting quantum interference devices (SQUIDs) with loop dimensions down to 200 nm and superconducting bridge dimensions of the order 80 nm have been produced. These SQUIDs have a range of potential applications. As an illustration, we describe a method for characterizing the effective area and the magnetic penetration depth of a structured superconducting thin film in the extreme limit, where the superconducting penetration depth is much greater than the film thickness and is comparable with the lateral dimensions of the device
Investigating the intrinsic noise limit of Dayem bridge NanoSQUIDs
NanoSQUIDs made from Nb thin films have been produced with nanometre loop sizes down to 200 nm, using weak-link junctions with dimensions less than 60 nm. These composite (W/Nb) single layer thin film devices, patterned by FIB milling, show extremely good low-noise performance ∼170 nΦ0 at temperatures between 5 and 8.5 K and can operate in rather high magnetic fields (at least up to 1 T). The devices produced so far have a limited operating temperature range, typically only 1–2 K. We have the goal of achieving operation at 4.2 K, to be compatible with the best SQUID series array (SSA) preamplifier available. Using the SSA to readout the nanoSQUIDs provides us with a means of investigating the intrinsic noise of the former. In this paper we report improved white noise levels of these nanoSQUIDs, enabling potential detection of a single electronic spin flip in a 1-Hz bandwidth. At low frequencies the noise performance is already limited by SSA preamplifier noise
Non-contact method for measurement of the microwave conductivity of graphene
We report a non-contact method for conductivity and sheet resistance
measurements of graphene samples using a high Q microwave dielectric resonator
perturbation technique, with the aim of fast and accurate measurement of
microwave conductivity and sheet resistance of monolayer and few layers
graphene samples. The dynamic range of the microwave conductivity measurements
makes this technique sensitive to a wide variety of imperfections and
impurities and can provide a rapid non-contacting characterisation method.
Typically the graphene samples are supported on a low-loss dielectric
substrate, such as quartz, sapphire or SiC. This substrate is suspended in the
near-field region of a small high Q sapphire puck microwave resonator. The
presence of the graphene perturbs both centre frequency and Q value of the
microwave resonator. The measured data may be interpreted in terms of the real
and imaginary components of the permittivity, and by calculation, the
conductivity and sheet resistance of the graphene. The method has great
sensitivity and dynamic range. Results are reported for graphene samples grown
by three different methods: reduced graphene oxide (GO), chemical vapour
deposition (CVD) and graphene grown epitaxially on SiC. The latter method
produces much higher conductivity values than the others.Comment: 8 pages, 2 figures and 2 table
Heat propagation models for superconducting nanobridges at millikelvin temperatures
Nanoscale superconducting quantum interference devices (nanoSQUIDs) most commonly use Dayem bridges as Josephson elements to reduce the loop size and achieve high spin sensitivity. Except at temperatures close to the critical temperature T c, the electrical characteristics of these bridges exhibit undesirable thermal hysteresis which complicates device operation. This makes proper thermal analysis an essential design consideration for optimising nanoSQUID performance at ultralow temperatures. However the existing theoretical models for this hysteresis were developed for micron-scale devices operating close to liquid helium temperatures, and are not fully applicable to a new generation of much smaller devices operating at significantly lower temperatures. We have therefore developed a new analytic heat model which enables a more accurate prediction of the thermal behaviour in such circumstances. We demonstrate that this model is in good agreement with experimental results measured down to 100 mK and discuss its validity for different nanoSQUID geometries
- …
