174 research outputs found
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope
We introduce the light-weight carbon fiber and aluminum gondola designed for
the SPIDER balloon-borne telescope. SPIDER is designed to measure the
polarization of the Cosmic Microwave Background radiation with unprecedented
sensitivity and control of systematics in search of the imprint of inflation: a
period of exponential expansion in the early Universe. The requirements of this
balloon-borne instrument put tight constrains on the mass budget of the
payload. The SPIDER gondola is designed to house the experiment and guarantee
its operational and structural integrity during its balloon-borne flight, while
using less than 10% of the total mass of the payload. We present a construction
method for the gondola based on carbon fiber reinforced polymer tubes with
aluminum inserts and aluminum multi-tube joints. We describe the validation of
the model through Finite Element Analysis and mechanical tests.Comment: 16 pages, 11 figures. Presented at SPIE Ground-based and Airborne
Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume
914
The effectiveness of mindfulness-based interventions in the perinatal period: a systematic review and meta-analysis
Perinatal mental health difficulties are associated with adverse consequences for parents and infants. However, the potential risks associated with the use of psychotropic medication for pregnant and breastfeeding women and the preferences expressed by women for non-pharmacological interventions mean it is important to ensure that effective psychological interventions are available. It has been argued that mindfulness-based interventions may offer a novel approach to treating perinatal mental health difficulties, but relatively little is known about their effectiveness with perinatal populations. This paper therefore presents a systematic review and meta-analysis of the effectiveness of mindfulness-based interventions for reducing depression, anxiety and stress and improving mindfulness skills in the perinatal period. A systematic review identified seventeen studies of mindfulness-based interventions in the perinatal period, including both controlled trials (n = 9) and pre-post uncontrolled studies (n = 8). Eight of these studies also included qualitative data. Hedge’s g was used to assess uncontrolled and controlled effect sizes in separate meta-analyses, and a narrative synthesis of qualitative data was produced. Pre- to post-analyses showed significant reductions in depression, anxiety and stress and significant increases in mindfulness skills post intervention, each with small to medium effect sizes. Completion of the mindfulness-based interventions was reasonable with around three quarters of participants meeting study-defined criteria for engagement or completion where this was recorded. Qualitative data suggested that participants viewed mindfulness interventions positively. However, between-group analyses failed to find any significant post-intervention benefits for depression, anxiety or stress of mindfulness-based interventions in comparison to control conditions: effect sizes were negligible and it was conspicuous that intervention group participants did not appear to improve significantly more than controls in their mindfulness skills. The interventions offered often deviated from traditional mindfulness-based cognitive therapy or mindfulness-based stress reduction programmes, and there was also a tendency for studies to focus on healthy rather than clinical populations, and on antenatal rather than postnatal populations. It is argued that these and other limitations with the included studies and their interventions may have been partly responsible for the lack of significant between-group effects. The implications of the findings and recommendations for future research are discussed
280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter
We describe the construction and characterization of the 280 GHz bolometric
focal plane units (FPUs) to be deployed on the second flight of the
balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary
science goal of detecting or placing an upper limit on the amplitude of the
primordial gravitational wave signature in the cosmic microwave background
(CMB) by constraining the B-mode contamination in the CMB from Galactic dust
emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated
silicon feedhorns coupled to an array of aluminum-manganese transition-edge
sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the
three 280 GHz FPUs contain 1,530 polarization sensitive bolometers (765 spatial
pixels) optimized for the low loading environment in flight and read out by
time-division SQUID multiplexing. In this paper we describe the mechanical,
thermal, and magnetic shielding architecture of the focal planes and present
cryogenic measurements which characterize yield and the uniformity of several
bolometer parameters. The assembled FPUs have high yields, with one array as
high as 95% including defects from wiring and readout. We demonstrate high
uniformity in device parameters, finding the median saturation power for each
TES array to be ~3 pW at 300 mK with a less than 6% variation across each array
at one standard deviation. These focal planes will be deployed alongside the 95
and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo
Station in Antarctica in December 2018
A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set
We present a sample-variance-limited measurement of the temperature power
spectrum () of the cosmic microwave background (CMB) using observations of
a field made by SPT-3G in 2018. We report
multifrequency power spectrum measurements at 95, 150, and 220GHz covering the
angular multipole range . We combine this
measurement with the published polarization power spectrum measurements from
the 2018 observing season and update their associated covariance matrix to
complete the SPT-3G 2018 data set. This is the first analysis to
present cosmological constraints from SPT , , and power spectrum
measurements jointly. We blind the cosmological results and subject the data
set to a series of consistency tests at the power spectrum and parameter level.
We find excellent agreement between frequencies and spectrum types and our
results are robust to the modeling of astrophysical foregrounds. We report
results for CDM and a series of extensions, drawing on the following
parameters: the amplitude of the gravitational lensing effect on primary power
spectra , the effective number of neutrino species
, the primordial helium abundance , and the
baryon clumping factor due to primordial magnetic fields . We find that the
SPT-3G 2018 data are well fit by CDM with a
probability-to-exceed of . For CDM, we constrain the expansion
rate today to and the
combined structure growth parameter to . The SPT-based
results are effectively independent of Planck, and the cosmological parameter
constraints from either data set are within of each other.
(abridged)Comment: 35 Pages, 17 Figures, 11 Table
A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument
We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight
The Design and Integrated Performance of SPT-3G
SPT-3G is the third survey receiver operating on the South Pole Telescope
dedicated to high-resolution observations of the cosmic microwave background
(CMB). Sensitive measurements of the temperature and polarization anisotropies
of the CMB provide a powerful dataset for constraining cosmology. Additionally,
CMB surveys with arcminute-scale resolution are capable of detecting galaxy
clusters, millimeter-wave bright galaxies, and a variety of transient
phenomena. The SPT-3G instrument provides a significant improvement in mapping
speed over its predecessors, SPT-SZ and SPTpol. The broadband optics design of
the instrument achieves a 430 mm diameter image plane across observing bands of
95 GHz, 150 GHz, and 220 GHz, with 1.2 arcmin FWHM beam response at 150 GHz. In
the receiver, this image plane is populated with 2690 dual-polarization,
tri-chroic pixels (~16000 detectors) read out using a 68X digital
frequency-domain multiplexing readout system. In 2018, SPT-3G began a multiyear
survey of 1500 deg of the southern sky. We summarize the unique optical,
cryogenic, detector, and readout technologies employed in SPT-3G, and we report
on the integrated performance of the instrument.Comment: 25 pages, 11 figures. Submitted to ApJ
Measurement and Modeling of Polarized Atmosphere at the South Pole with SPT-3G
We present the detection and characterization of fluctuations in linearly
polarized emission from the atmosphere above the South Pole. These measurements
make use of Austral winter survey data from the SPT-3G receiver on the South
Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We
use the cross-correlation between detectors to produce an unbiased estimate of
the power in Stokes I, Q, and U parameters on large angular scales. Our results
are consistent with the polarized signal being produced by the combination of
Rayleigh scattering of thermal radiation from the ground and thermal emission
from a population of horizontally aligned ice crystals with an anisotropic
distribution described by Kolmogorov turbulence. The signal is most significant
at large angular scales, high observing frequency, and low elevation angle.
Polarized atmospheric emission has the potential to significantly impact
observations on the large angular scales being targeted by searches for
inflationary B-mode CMB polarization. We present the distribution of measured
angular power spectrum amplitudes in Stokes Q and I for 4 years of winter
observations, which can be used to simulate the impact of atmospheric
polarization and intensity fluctuations at the South Pole on a specified
experiment and observation strategy. For the SPT-3G data, downweighting the
small fraction of significantly contaminated observations is an effective
mitigation strategy. In addition, we present a strategy for further improving
sensitivity on large angular scales where maps made in the 220 GHz band are
used to measure and subtract the polarized atmosphere signal from the 150 GHz
band maps. In observations with the SPT-3G instrument at the South Pole, the
polarized atmospheric signal is a well-understood and sub-dominant contribution
to the measured noise after implementing the mitigation strategies described
here.Comment: 32 pages, 28 figure
- …
