1,149 research outputs found
Forward and Backward Dynamics in implicitly defined Overlapping Generations Models
In dynamic economic models derived from optimization principles, the forward equilibrium dynamics may not be uniquely defined, while the backward dynamics is well defined. We derive properties of the global forward equilibrium paths based on properties of the backward dynamics. We propose the framework of iterated function systems (IFS) to describe the set of forward equilibria, and apply the IFS framework to a one- and a two-dimensional version of the overlapping generations (OLG)-model. We show that, if the backward dynamics is chaotic and has a homoclinic orbit (a “snap-back repellerâ€) the set of forward equilibrium paths converges to a fractal attractor. Forward equilibria may be interpreted as sunspot equilibria, where a random sunspot sequence determines equilibrium selection at each date.
Market mood, adaptive beliefs and asset price dynamics
Empirical evidence has suggested that, facing different trading strategies and complicated decision, the proportions of agents relying on particular strategies may stay at constant level or vary over time. This paper presents a simple "dynamic market fraction" model of two groups of traders, fundamentalists and trend followers, under a market maker scenario. Market mood and evolutionary adaption are characterized by fixed and adaptive switching fraction among two groups, respectively. Using local stability and bifurcation analysis, as well as numerical simulation, the role played by the key parameters in the market behaviour is examined. Particular attention is paid to the impact of the market fraction, determined by the fixed proportions of confident fundamentalists and trend followers, and by the proportion of adaptively rational agents, who adopt different strategies over time depending on realized profits. © 2005 Elsevier Ltd. All rights reserved
Early onset of hypertension and serum electrolyte changes as potential predictive factors of activity in advanced hcc patients treated with sorafenib: results from a retrospective analysis of the HCC-AVR group
Hypertension (HTN) is frequently associated with the use of angiogenesis inhibitors targeting the vascular endothelial growth factor pathway and appears to be a generalized effect of this class of agent. We investigated the phenomenon in 61 patients with advanced hepatocellular carcinoma (HCC) receiving sorafenib. Blood pressure and plasma electrolytes were measured on days 1 and 15 of the treatment. Patients with sorafenib-induced HTN had a better outcome than those without HTN (disease control rate: 63.4% vs. 17.2% (p=0.001); progression-free survival 6.0 months (95% CI 3.2-10.1) vs. 2.5 months (95% CI 1.9-2.6) (p<0.001) and overall survival 14.6 months (95% CI9.7-19.0) vs. 3.9 months (95% CI 3.1-8.7) (p=0.003). Sodium levels were generally higher on day 15 than at baseline (+2.38, p<0.0001) in the group of responders (+4.95, p <0.0001) compared to patients who progressed (PD) (+0.28, p=0.607). In contrast, potassium was lower on day 14 (-0.30, p=0.0008) in the responder group (-0.58, p=0.003) than in those with progressive disease (-0.06, p=0.500). The early onset of hypertension is associated with improved clinical outcome in HCC patients treated with sorafenib. Our data are suggestive of an activation of the renin-angiotensin system in patients with advanced disease who developed HTN during sorafenib treatmen
Changes in the composition of the upper stratosphere - lower mesosphere at northern high latitudes after a sudden stratospheric warming
Comparing the temperatures of galaxy clusters from hydro-N-body simulations to Chandra and XMM-Newton observations
Theoretical studies of the physical processes guiding the formation and
evolution of galaxies and galaxy clusters in the X-ray are mainly based on the
results of numerical hydrodynamical N-body simulations, which in turn are often
directly compared to X-ray observations. Although trivial in principle, these
comparisons are not always simple. We demonstrate that the projected
spectroscopic temperature of thermally complex clusters obtained from X-ray
observations is always lower than the emission-weighed temperature, which is
widely used in the analysis of numerical simulations. We show that this
temperature bias is mainly related to the fact that the emission-weighted
temperature does not reflect the actual spectral properties of the observed
source. This has important implications for the study of thermal structures in
clusters, especially when strong temperature gradients, like shock fronts, are
present. Because of this bias, in real observations shock fronts appear much
weaker than what is predicted by emission-weighted temperature maps, and may
even not be detected. This may explain why, although numerical simulations
predict that shock fronts are a quite common feature in clusters of galaxies,
to date there are very few observations of objects in which they are clearly
seen. To fix this problem we propose a new formula, the spectroscopic-like
temperature function, and show that, for temperature larger than 3 keV, it
approximates the spectroscopic temperature better than few per cent, making
simulations more directly comparable to observations.Comment: Submitted for publication in MNRAS; 15 pages, 10 color figures and 13
BW figures,mn2e.cls. High resolution figures available here:
http://people.roma2.infn.it/~mazzotta/preprints/mazzotta.pd
Lactate dehydrogenase in hepatocellular carcinoma: something old, something new
Hepatocellular carcinoma (HCC) is the most common primary liver tumour (80-90%) and represents more than 5.7% of all cancers. Although in recent years the therapeutic options for these patients have increased, clinical results are yet unsatisfactory and the prognosis remains dismal. Clinical or molecular criteria allowing a more accurate selection of patients are in fact largely lacking. Lactic dehydrogenase (LDH) is a glycolytic key enzyme in the conversion of pyruvate to lactate under anaerobic conditions. In preclinical models, upregulation of LDH has been suggested to ensure both an efficient anaerobic/glycolytic metabolism and a reduced dependence on oxygen under hypoxic conditions in tumour cells. Data from several analyses on different tumour types seem to suggest that LDH levels may be a significant prognostic factor. The role of LDH in HCC has been investigated by different authors in heterogeneous populations of patients. It has been tested as a potential biomarker in retrospective, small, and nonfocused studies in patients undergoing surgery, transarterial chemoembolization (TACE), and systemic therapy. In the major part of these studies, high LDH serum levels seem to predict a poorer outcome. We have reviewed literature in this setting trying to resume basis for future studies validating the role of LDH in this diseas
A statistical procedure for testing financial contagion
The analysis of the relationships among financial markets and the identification of financial contagion episodes are relatively recent in the economic analysis and have experienced a rapid development in the last decade, coinciding with the occurrence of relevant financial crises which had effects that spread outside the
geographical areas where they originally started.
The increasing interest in this topic has lead to the definition of different tests for detecting the existence of financial contagion (Corsetti et al., 2001; Forbes and Rigobon, 2001; Dungey et al., 2004; Allen and Gale, 2005; Rodriguez, 2007; Krishnamurthy, 2009; Sugihara, 2010). However, conclusions on both theoretical and statistical analyses of financial contagion are far from unique.
The changes in the international dynamics of returns, which in the last decades has been characterized by increases in both volatilities and asset price synchronicities in different countries, have raised even further the scientific interest in this topic. In this paper, we propose a new methodology for the evaluation of contagion based on the extent of disequilibria in financial dynamics and, in this framework, we define an innovative test for the detection of contagion which specifically identifies the disequilibrium originated by the international transmission of financial crises and their relationships with the behaviours of market participants. Disequilibria exogenously generated by the spread of the effects of a crisis beyond the dynamic process describing endogenous amplification of volatility from one country to other countries are attributed to contagion phenomena. In this framework, contagion effects are separated from the endogenous transmission processes which have their genesis in both the pricing process system and the investor\u2019s behaviours and which are responsible for the amplification of cross-market financial interdependence.
In this paper, we discuss the theoretical framework underlying our approach and define a new econometric model for evaluating contagion among countries
Simulation techniques for cosmological simulations
Modern cosmological observations allow us to study in great detail the
evolution and history of the large scale structure hierarchy. The fundamental
problem of accurate constraints on the cosmological parameters, within a given
cosmological model, requires precise modelling of the observed structure. In
this paper we briefly review the current most effective techniques of large
scale structure simulations, emphasising both their advantages and
shortcomings. Starting with basics of the direct N-body simulations appropriate
to modelling cold dark matter evolution, we then discuss the direct-sum
technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and
the tree algorithms. Simulations of baryonic matter in the Universe often use
hydrodynamic codes based on both particle methods that discretise mass, and
grid-based methods. We briefly describe Eulerian grid methods, and also some
variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 12; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
- …
