1,172 research outputs found

    Level crossings in a cavity QED model

    Full text link
    In this paper I study the dynamics of a two-level atom interacting with a standing wave field. When the atom is subjected to a weak linear force, the problem can be turned into a time dependent one, and the evolution is understood from the band structure of the spectrum. The presence of level crossings in the spectrum gives rise to Bloch oscillations of the atomic motion. Here I investigate the effects of the atom-field detuning parameter. A variety of different level crossings are obtained by changing the magnitude of the detuning, and the behaviour of the atomic motion is strongly affected due to this. I also consider the situation in which the detuning is oscillating in time and its impact on the atomic motion. Wave packet simulations of the full problem are treated numerically and the results are compared with analytical solutions given by the standard Landau-Zener and the three-level Landau-Zener models.Comment: 12 pages, 10 figure

    New spin squeezing and other entanglement tests for two mode systems of identical bosons

    Get PDF
    For any quantum state representing a physical system of identical particles, the density operator must satisfy the symmetrization principle (SP) and conform to super-selection rules (SSR) that prohibit coherences between differing total particle numbers. Here we consider bi-partitite states for massive bosons, where both the system and sub-systems are modes (or sets of modes) and particle numbers for quantum states are determined from the mode occupancies. Defining non-entangled or separable states as those prepared via local operations (on the sub-systems) and classical communication processes, the sub-system density operators are also required to satisfy the SP and conform to the SSR, in contrast to some other approaches. Whilst in the presence of this additional constraint the previously obtained sufficiency criteria for entanglement, such as the sum of the ˆSx and ˆSy variances for the Schwinger spin components being less than half the mean boson number, and the strong correlation test of |haˆm (bˆ†)ni|2 being greater than h(aˆ†)maˆm (bˆ†)nbˆni(m, n = 1, 2, . . .) are still valid, new tests are obtained in our work. We show that the presence of spin squeezing in at least one of the spin components ˆSx , ˆSy and ˆSz is a sufficient criterion for the presence of entanglement and a simple correlation test can be constructed of |haˆm (bˆ†)ni|2 merely being greater than zero.We show that for the case of relative phase eigenstates, the new spin squeezing test for entanglement is satisfied (for the principle spin operators), whilst the test involving the sum of the ˆSx and ˆSy variances is not. However, another spin squeezing entanglement test for Bose–Einstein condensates involving the variance in ˆSz being less than the sum of the squared mean values for ˆSx and ˆSy divided by the boson number was based on a concept of entanglement inconsistent with the SP, and here we present a revised treatment which again leads to spin squeezing as an entanglement test

    Evaporative cooling in a radio-frequency trap

    Get PDF
    A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped by a rf field RF1, the cooling procedure is facilitated using a second rf source RF2. This second rf field produces a controlled coupling between the spin states dressed by RF1. The evaporation is then possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into untrapped dressed states by abruptly switching off the interaction. In the continuous case, it is possible for energetic atoms to adiabatically follow the doubly-dressed states and escape out of the trap. Our results also show that when the frequencies of the fields RF1 and RF2 are separated by at least the Rabi frequency associated with RF1, additional evaporation zones appear which can make this process more efficient.Comment: 12 pages, 11 figure

    Observing the spin of a free electron

    Get PDF
    Long ago, Bohr, Pauli, and Mott argued that it is not, in principle, possible to measure the spin components of a free electron. One can try to use a Stern-Gerlach type of device, but the finite size of the beam results in an uncertainty of the splitting force that is comparable with the gradient force. The result is that no definite spin measurement can be made. Recently there has been a revival of interest in this problem, and we will present our own analysis and quantum-mechanical wave-packet calculations which suggest that a spin measurement is possible for a careful choice of initial conditions

    Control of atomic decay rates via manipulation of reservoir mode frequencies

    Full text link
    We analyse the problem of a two-level atom interacting with a time-dependent dissipative environment modelled by a bath of reservoir modes. In the model of this paper the principal features of the reservoir structure remain constant in time, but the microscopic structure does not. In the context of an atom in a leaky cavity this corresponds to a fixed cavity and a time-dependent external bath. In this situation we show that by chirping the reservoir modes sufficiently fast it is possible to inhibit, or dramatically enhance the decay of the atomic system, even though the gross reservoir structure is fixed. Thus it is possible to extract energy from a cavity-atom system faster than the empty cavity rate. Similar, but less dramatic effects are possible for moderate chirps where partial trapping of atomic population is also possible.Comment: 12 pages, 9 figure

    Molecular heat pump for rotational states

    Get PDF
    In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems

    Quantum metrology at the Heisenberg limit with ion traps

    Get PDF
    Sub-Planck phase-space structures in the Wigner function of the motional degree of freedom of a trapped ion can be used to perform weak force measurements with Heisenberg-limited sensitivity. We propose methods to engineer the Hamiltonian of the trapped ion to generate states with such small scale structures, and we show how to use them in quantum metrology applications.Comment: 10 pages, 6 figure

    RF spectroscopy in a resonant RF-dressed trap

    Full text link
    We study the spectroscopy of atoms dressed by a resonant radiofrequency (RF) field inside an inhomogeneous magnetic field and confined in the resulting adiabatic potential. The spectroscopic probe is a second, weak, RF field. The observed line shape is related to the temperature of the trapped cloud. We demonstrate evaporative cooling of the RF-dressed atoms by sweeping the frequency of the second RF field around the Rabi frequency of the dressing field.Comment: 7 figures, 8 pages; to appear in J. Phys.

    Two-dimensional atom trapping in field-induced adiabatic potentials

    Get PDF
    We show how to create a novel two-dimensional trap for ultracold atoms from a conventional magnetic trap. We achieve this by utilizing rf-induced adiabatic potentials to enhance the trapping potential in one direction. We demonstrate the loading process and discuss the experimental conditions under which it might be possible to prepare a 2D Bose condensate. A scheme for the preparation of coherent matterwave bubbles is also discussed

    Refraction of a Gaussian Seaway

    Full text link
    Refraction of a Longuet-Higgins Gaussian sea by random ocean currents creates persistent local variations in average energy and wave action. These variations take the form of lumps or streaks, and they explicitly survive dispersion over wavelength and incoming wave propagation direction. Thus, the uniform sampling assumed in the venerable Longuet-Higgins theory does not apply following refraction by random currents. Proper handling of the non-uniform sampling results in greatly increased probability of freak wave formation. The present theory represents a synthesis of Longuet-Higgins Gaussian seas and the refraction model of White and Fornberg, which considered the effect of currents on a plane wave incident seaway. Using the linearized equations for deep ocean waves, we obtain quantitative predictions for the increased probability of freak wave formation when the refractive effects are taken into account. The crest height or wave height distribution depends primarily on the ``freak index", gamma, which measures the strength of refraction relative to the angular spread of the incoming sea. Dramatic effects are obtained in the tail of this distribution even for the modest values of the freak index that are expected to occur commonly in nature. Extensive comparisons are made between the analytical description and numerical simulations.Comment: 18 pages, 10 figure
    corecore