384 research outputs found
Recommended from our members
Long-Term Corticosteroid-Sparing Immunosuppression for Cardiac Sarcoidosis.
Background Long-term corticosteroid therapy is the standard of care for treatment of cardiac sarcoidosis (CS). The efficacy of long-term corticosteroid-sparing immunosuppression in CS is unknown. The goal of this study was to assess the efficacy of methotrexate with or without adalimumab for long-term disease suppression in CS, and to assess recurrence and adverse event rates after immunosuppression discontinuation. Methods and Results Retrospective chart review identified treatment-naive CS patients at a single academic medical center who received corticosteroid-sparing maintenance therapy. Demographics, cardiac uptake of 18-fluorodeoxyglucose, and adverse cardiac events were compared before and during treatment and between those with persistent or interrupted immunosuppression. Twenty-eight CS patients were followed for a mean 4.1 (SD 1.5) years. Twenty-five patients received 4 to 8 weeks of high-dose prednisone (>30 mg/day), followed by taper and maintenance therapy with methotrexate±low-dose prednisone (low-dose prednisone, <10 mg/day). Adalimumab was added in 19 patients with persistently active CS or in those with intolerance to methotrexate. Methotrexate±low-dose prednisone resulted in initial reduction (88%) or elimination (60%) of 18-fluorodeoxyglucose uptake, and patients receiving adalimumab-containing regimens experienced improved (84%) or resolved (63%) 18-fluorodeoxyglucose uptake. Radiologic relapse occurred in 8 of 9 patients after immunosuppression cessation, 4 patients on methotrexate-containing regimens, and in no patients on adalimumab-containing regimens. Conclusions Corticosteroid-sparing regimens containing methotrexate with or without adalimumab is an effective maintenance therapy in patients after an initial response is confirmed. Disease recurrence in patients on and off immunosuppression support need for ongoing radiologic surveillance regardless of immunosuppression regimen
“Some men deeply hate women, and express that hatred freely”: examining victims’ experiences and perceptions of gendered hate crime
Extensive debate about the place of gender within the hate crime policy domain has been fuelled by national victimisation surveys indicating people’s experiences of ‘gender hate crime’ coupled with Nottinghamshire Police’s decision to begin categorising misogynistic street harassment as a form of hate crime. Drawing on the results of an online survey of 85 respondents, this article explores people’s experiences of gender-related victimisation as ‘hate crimes’. The analysis demonstrates how participants relate their experiences to the hate crime concept, their perceptions on punishment and reporting to the police, and also wider impacts on their recovery processes. This paper provides a timely contribution towards current debates around using the existing hate crime model for addressing crimes motivated by gender hostility
Bone morphogenetic proteins − 7 and − 2 in the treatment of delayed osseous union secondary to bacterial osteitis in a rat model
Background: Bone infections due to trauma and subsequent delayed or impaired fracture healing represent a great challenge in orthopedics and trauma surgery. The prevalence of such bacterial infection-related types of delayed non-union is high in complex fractures, particularly in open fractures with additional extensive soft-tissue damage. The aim of this study was to establish a rat model of delayed osseous union secondary to bacterial osteitis and investigate the impact of rhBMP-7 and rhBMP-2 on fracture healing in the situation of an ongoing infection.
Methods: After randomization to four groups 72 Sprague-Dawley rats underwent a transverse fracture of the midshaft tibia stabilized by intramedullary titanium K-wires. Three groups received an intramedullary inoculation with Staphylococcus aureus (103 colony-forming units) before stabilization and the group without bacteria inoculation served as healing control. After 5 weeks, a second surgery was performed with irrigation of the medullary canal and local rhBMP-7 and rhBMP-2 treatment whereas control group and infected control group received sterile saline. After further 5 weeks rats were sacrificed and underwent biomechanical testing to assess the mechanical stability of the fractured bone. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, and to quantify callus formation and the mineralized area of the callus.
Results: Biomechanical testing showed a significantly higher fracture torque in the non-infected control group and the infected rhBMP-7- and rhBMP-2 group compared with the infected control group (p < 0.001). RhBMP-7 and rhBMP-2 groups did not show statistically significant differences (p = 0.57). Histological findings supported improved bone-healing after rhBMP treatment but quantitative micro-CT and histomorphometric results still showed significantly more hypertrophic callus tissue in all three infected groups compared to the non-infected group. Results from a semiquantitative bone-healing-score revealed best bone-healing in the non-infected control group. The expected chronic infection was confirmed in all infected groups.
Conclusions: In delayed bone healing secondary to infection rhBMP treatment promotes bone healing with no significant differences in the healing efficacy of rhBMP-2 and rhBMP-7 being noted. Further new therapeutic bone substitutes should be analyzed with the present rat model for delayed osseous union secondary to bacterial osteitis
An in vivo Comparison Study Between Strontium Nanoparticles and rhBMP2
The osteoinductive property of strontium was repeatedly proven in the last decades. Compelling in vitro data demonstrated that strontium hydroxyapatite nanoparticles exert a dual action, by promoting osteoblasts-driven matrix secretion and inhibiting osteoclasts-driven matrix resorption. Recombinant human bone morphogenetic protein 2 (rhBMP2) is a powerful osteoinductive biologic, used for the treatment of vertebral fractures and critically-sized bone defects. Although effective, the use of rhBMP2 has limitations due its recombinant morphogen nature. In this study, we examined the comparison between two osteoinductive agents: rhBMP2 and the innovative strontium-substituted hydroxyapatite nanoparticles. To test their effectiveness, we independently loaded Gelfoam sponges with the two osteoinductive agents and used the sponges as agent-carriers. Gelfoam are FDA-approved biodegradable medical devices used as delivery system for musculoskeletal defects. Their porous structure and spongy morphology make them attractive in orthopedic field. The abiotic characterization of the loaded sponges, involving ion release pattern and structure investigation, was followed by in vivo implantation onto the periosteum of healthy mice and comparison of the effects induced by each implant was performed. Abiotic analysis demonstrated that strontium was continuously released from the sponges over 28 days with a pattern similar to rhBMP2. Histological observations and gene expression analysis showed stronger endochondral ossification elicited by strontium compared to rhBMP2. Osteoclast activity was more inhibited by strontium than by rhBMP2. These results demonstrated the use of sponges loaded with strontium nanoparticles as potential bone grafts might provide better outcomes for complex fractures. Strontium nanoparticles are a novel and effective non-biologic treatment for bone injuries and can be used as novel powerful therapeutics for bone regeneration
Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system.
2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.
S
Remote magnetic versus manual catheters: evaluation of ablation effect in atrial fibrillation by myocardial marker levels
Background A remote magnetic navigation (MN) system is available for radiofrequency ablation of atrial fibrillation (AF), challenging the conventional manual ablation technique. The myocardial markers were measured to compare the effects of the two types of MN catheters with those of a manual-irrigated catheter in AF ablation. Methods AF patients underwent an ablation procedure using either a conventional manual-irrigated catheter (CIR, n=65) or an MN system utilizing either an irrigated (RMI, n=23) or non-irrigated catheter (RMN, n=26). Levels of troponin T (TnT) and the cardiac isoform of creatin kinase (CKMB) were measured before and after ablation. Results Mean procedure times and total ablation times were longer employing the remote magnetic system. In all groups, there were pronounced increases in markers of myocardial injury after ablation, demonstrating a significant correlation between total ablation time and post-ablation levels of TnT and CKMB (CIR r=0.61 and 0.53, p<0.001; RMI r=0.74 and 0.73, p<0.001; and RMN r=0.51 and 0.59, p<0.01). Time-corrected release of TnT was significantly higher in the CIR group than in the other groups. Of the patients, 59.6% were free from AF at follow-up (12.2± 5.4 months) and there were no differences in success rate between the three groups. Conclusions Remote magnetic catheters may create more discrete and predictable ablation lesions measured by myocardial enzymes and may require longer total ablation time to reach the procedural endpoints. Remote magnetic non-irrigated catheters do not appear to be inferior to magnetic irrigated catheters in terms of myocardial enzyme release and clinical outcome
Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes
Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs
Celecoxib does not appear to affect prosthesis fixation in total knee replacement: A randomized study using radiostereometry in 50 patients
Background and purpose After joint replacement, a repair process starts at the interface between bone and cement. If this process is disturbed, the prosthesis may never become rigidly fixed to the bone, leading to migration—and with time, loosening. Cox-2 inhibitors are widely used as postoperative analgesics, and have adverse effects on bone healing. This could tamper prosthesis fixation. We investigated whether celecoxib, a selective Cox-2 inhibitor, increases prosthesis migration in total knee replacement (TKR)
- …
