8 research outputs found
Development of a wet lime/limestone flue gas desulfurization process model. Phase I: Species distribution model
MIP-MAP: High Throughput Mapping of<i>Caenorhabditis elegans</i>Temperature Sensitive Mutants via Molecular Inversion Probes
AbstractTemperature sensitive (TS) alleles are important tools for the genetic and functional analysis of essential genes in many model organisms. While isolating TS alleles is not difficult, determining the TS-conferring mutation can be problematic. Even with whole-genome sequencing (WGS) data there is a paucity of predictive methods for identifying TS alleles from DNA sequence alone. We assembled 173 TS lethal mutants ofCaenorhabditis elegansand used WGS to identify several hundred mutations per strain. We leveraged single molecule molecular inversion probes (MIPs) to sequence variant sites at high depth in the cross-progeny of TS mutants and a mapping strain with identified sequence variants but no apparent phenotypic differences from the reference N2 strain. By sampling for variants at ~1Mb intervals across the genome we genetically mapped mutant alleles at a resolution comparable to current standards in a process we call MIP-MAP. The MIP-MAP protocol, however, permits high-throughput sequencing of multiple TS mutation mapping libraries at less than 200K reads per library. Using MIP-MAP on a subset of TS mutants, via a competitive selection assay and standard recombinant mutant selection, we defined TS-associated intervals of 3Mb or less. Our results suggest this collection of strains contains a diverse library of TS alleles for genes involved in development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes. The MIPs protocol should allow high-throughput tracking of genetic variants in any mixed population.</jats:p
MIP-MAP: High-Throughput Mapping of <i>Caenorhabditis elegans</i> Temperature-Sensitive Mutants via Molecular Inversion Probes
Abstract
Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans. Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2. We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size &lt; 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.</jats:p
Erratum: Corrigendum: Regulatory analysis of the C. elegans genome with spatiotemporal resolution
Recommended from our members
The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors.
To develop a catalog of regulatory sites in two major model organisms, Drosophila melanogaster and Caenorhabditis elegans, the modERN (model organism Encyclopedia of Regulatory Networks) consortium has systematically assayed the binding sites of transcription factors (TFs). Combined with data produced by our predecessor, modENCODE (Model Organism ENCyclopedia Of DNA Elements), we now have data for 262 TFs identifying 1.23 M sites in the fly genome and 217 TFs identifying 0.67 M sites in the worm genome. Because sites from different TFs are often overlapping and tightly clustered, they fall into 91,011 and 59,150 regions in the fly and worm, respectively, and these binding sites span as little as 8.7 and 5.8 Mb in the two organisms. Clusters with large numbers of sites (so-called high occupancy target, or HOT regions) predominantly associate with broadly expressed genes, whereas clusters containing sites from just a few factors are associated with genes expressed in tissue-specific patterns. All of the strains expressing GFP-tagged TFs are available at the stock centers, and the chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center and also through a simple interface (http://epic.gs.washington.edu/modERN/) that facilitates rapid accessibility of processed data sets. These data will facilitate a vast number of scientific inquiries into the function of individual TFs in key developmental, metabolic, and defense and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks and globally across the life spans of these two key model organisms
The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors.
To develop a catalog of regulatory sites in two major model organisms, Drosophila melanogaster and Caenorhabditis elegans, the modERN (model organism Encyclopedia of Regulatory Networks) consortium has systematically assayed the binding sites of transcription factors (TFs). Combined with data produced by our predecessor, modENCODE (Model Organism ENCyclopedia Of DNA Elements), we now have data for 262 TFs identifying 1.23 M sites in the fly genome and 217 TFs identifying 0.67 M sites in the worm genome. Because sites from different TFs are often overlapping and tightly clustered, they fall into 91,011 and 59,150 regions in the fly and worm, respectively, and these binding sites span as little as 8.7 and 5.8 Mb in the two organisms. Clusters with large numbers of sites (so-called high occupancy target, or HOT regions) predominantly associate with broadly expressed genes, whereas clusters containing sites from just a few factors are associated with genes expressed in tissue-specific patterns. All of the strains expressing GFP-tagged TFs are available at the stock centers, and the chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center and also through a simple interface (http://epic.gs.washington.edu/modERN/) that facilitates rapid accessibility of processed data sets. These data will facilitate a vast number of scientific inquiries into the function of individual TFs in key developmental, metabolic, and defense and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks and globally across the life spans of these two key model organisms
