358 research outputs found
Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia
Objective: Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD).
Materials and Methods: Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral Quantitative Computed Tomography (pQCT) at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (U.K.). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA), and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA, and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh.
Results: BMDtrab decreased exponentially with time since injury, at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI.
Conclusion: At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively.
Keywords: Bone loss, osteoporosis, paraplegia, peripheral Quantitative Computed Tomography, spinal cord injur
Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury
Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. © 2013 Solovyev et al
Performance of SNP markers for parentage analysis in the Italian Alpine brown bear using non-invasive samples
Determination of parentage provides valuable information for the conservation of wild populations, for instance, by allowing the monitoring of breeding success and inbreeding. Between 1999 and 2002, nine brown bears (Ursus arctos) were translocated to augment the remnant population of a few surviving individuals in the Italian Alps, but only part of them reproduced, with a higher inbreeding risk occurrence in the long-time. Currently, in the Alpine population, parentage tests are assessed through the analysis of 15 microsatellite loci (STRs), but the reduction of genetic variability in future generations will need the use of additional informative markers. Single nucleotide polymorphisms (SNPs) have been proven to be useful and reliable in individual identification and family reconstruction; moreover, they can perform well on low-quality samples. In this study, we analysed 51 SNPs to generate a SNP multilocus genotype dataset of 54 Alpine brown bears (Ursus arctos) and compared its performance in parentage analysis with the validated STR dataset. We found that SNPs alone are not sufficient to determine parentage relationships, but the combination of SNPs and STRs provided unambiguous parentage assignments. The combined panel also performed better than STRs when true parents were not present in the dataset and, consequently, showed higher values of assignment probabilities
Transcriptomic and Epigenetic Regulation of Disuse Atrophy and the Return to Activity in Skeletal Muscle
Physical inactivity and disuse are major contributors to age-related muscle loss. Denervation of skeletal muscle has been previously used as a model with which to investigate muscle atrophy following disuse. Although gene regulatory networks that control skeletal muscle atrophy after denervation have been established, the transcriptome in response to the recovery of muscle after disuse and the associated epigenetic mechanisms that may function to modulate gene expression during skeletal muscle atrophy or recovery have yet to be investigated. We report that silencing the tibialis anterior muscle in rats with tetrodotoxin (TTX)—administered to the common peroneal nerve—resulted in reductions in muscle mass of 7, 29, and 51% with corresponding reductions in muscle fiber cross-sectional area of 18, 42, and 69% after 3, 7, and 14 d of TTX, respectively. Of importance, 7 d of recovery, during which rodents resumed habitual physical activity, restored muscle mass from a reduction of 51% after 14 d TTX to a reduction of only 24% compared with sham control. Returning muscle mass to levels observed at 7 d TTX administration (29% reduction). Transcriptome-wide analysis demonstrated that 3714 genes were differentially expressed across all conditions at a significance of P ≤ 0.001 after disuse-induced atrophy. Of interest, after 7 d of recovery, the expression of genes that were most changed during TTX had returned to that of the sham control. The 20 most differentially expressed genes after microarray analysis were identified across all conditions and were cross-referenced with the most frequently occurring differentially expressed genes between conditions. This gene subset included myogenin (MyoG), Hdac4, Ampd3, Trim63 (MuRF1), and acetylcholine receptor subunit α1 (Chrna1). Transcript expression of these genes and Fboxo32 (MAFbx), because of its previously identified role in disuse atrophy together with Trim63 (MuRF1), were confirmed by real-time quantitative RT-PCR, and DNA methylation of their promoter regions was analyzed by PCR and pyrosequencing. MyoG, Trim63 (MuRF1), Fbxo32 (MAFbx), and Chrna1 demonstrated significantly decreased DNA methylation at key time points after disuse-induced atrophy that corresponded with significantly increased gene expression. Of importance, after TTX cessation and 7 d of recovery, there was a marked increase in the DNA methylation profiles of Trim63 (MuRF1) and Chrna1 back to control levels. This also corresponded with the return of gene expression in the recovery group back to baseline expression observed in sham-operated controls. To our knowledge, this is the first study to demonstrate that skeletal muscle atrophy in response to disuse is accompanied by dynamic epigenetic modifications that are associated with alterations in gene expression, and that these epigenetic modifications and gene expression profiles are reversible after skeletal muscle returns to normal activity
Synthesis and Biological Evaluation of Dantrolene-Like Hydrazide and Hydrazone Analogues as Multitarget Agents for Neurodegenerative Diseases
Dantrolene, a drug used for the management of malignant hyperthermia, had been recently evaluated for prospective repurposing as multitarget agent for neurodegenerative syndromes, including Alzheimer's disease (AD). Herein, twenty-one dantrolene-like hydrazide and hydrazone analogues were synthesized with the aim of exploring structure-activity relationships (SARs) for the inhibition of human monoamine oxidases (MAOs) and acetylcholinesterase (AChE), two well-established target enzymes for anti-AD drugs. With few exceptions, the newly synthesized compounds exhibited selectivity toward MAO B over either MAO A or AChE, with the secondary aldimine 9 and phenylhydrazone 20 attaining IC50 values of 0.68 and 0.81 μM, respectively. While no general SAR trend was observed with lipophilicity descriptors, a molecular simplification strategy allowed the main pharmacophore features to be identified, which are responsible for the inhibitory activity toward MAO B. Finally, further in vitro investigations revealed cell protection from oxidative insult and activation of carnitine/acylcarnitine carrier as concomitant biological activities responsible for neuroprotection by hits 9 and 20 and other promising compounds in the examined series
Obesity, Type 2 Diabetes and Bone in Adults.
In an increasingly obese and ageing population, type 2 diabetes (T2DM) and osteoporotic fracture are major public health concerns. Understanding how obesity and type 2 diabetes modulate fracture risk is important to identify and treat people at risk of fracture. Additionally, the study of the mechanisms of action of obesity and T2DM on bone has already offered insights that may be applicable to osteoporosis in the general population. Most available evidence indicates lower risk of proximal femur and vertebral fracture in obese adults. However the risk of some fractures (proximal humerus, femur and ankle) is higher, and a significant number fractures occur in obese people. BMI is positively associated with BMD and the mechanisms of this association in vivo may include increased loading, adipokines such as leptin, and higher aromatase activity. However, some fat depots could have negative effects on bone; cytokines from visceral fat are pro-resorptive and high intramuscular fat content is associated with poorer muscle function, attenuating loading effects and increasing falls risk. T2DM is also associated with higher bone mineral density (BMD), but increased overall and hip fracture risk. There are some similarities between bone in obesity and T2DM, but T2DM seems to have additional harmful effects and emerging evidence suggests that glycation of collagen may be an important factor. Higher BMD but higher fracture risk presents challenges in fracture prediction in obesity and T2DM. Dual energy X-ray absorptiometry underestimates risk, standard clinical risk factors may not capture all relevant information, and risk is under-recognised by clinicians. However, the limited available evidence suggests that osteoporosis treatment does reduce fracture risk in obesity and T2DM with generally similar efficacy to other patients
Epilepsy and inborn errors of metabolism in adults: The diagnostic odyssey of a young woman with medium-chain acyl-coenzyme A dehydrogenase deficiency
We describe a case of epileptic encephalopathy in a young woman with undiagnosed medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD), who presented with an early-onset focal motor status epilepticus (SE) then followed by permanent left hemiplegia and drug-resistant epilepsy with neurodevelopmental delay. Throughout her clinical history, recurrent episodes of lethargy, feeding difficulties, and clustering seizures occurred, progressing into a super refractory SE and death at the age of 25 years. Although epilepsy is not a distinctive feature of MCADD, we advise considering this metabolic disease as a possible etiology of epileptic encephalopathy and hemiconvulsion-hemiplegia-epilepsy syndrome of unknown origin, on the chance to provide a timely and targeted treatment preventing development delay and evolution to SE. Adult patients with epilepsy of unknown etiology not screened at birth for inborn errors of metabolism, such as MCADD, should be promptly investigated for these treatable conditions
Closing the osteoporosis care gap – Increased osteoporosis awareness among geriatrics and rehabilitation teams
<p>Abstract</p> <p>Background</p> <p>A care gap exists between recommendations and practice regarding the diagnosis and treatment of osteoporosis in fracture patients. The current study was designed to determine rates and predictors of in-hospital diagnosis and treatment of osteoporosis in patients admitted with fragility hip fractures, and to assess differences in these rates since the outset of the multipronged "Fracture? Think Osteoporosis" (FTOP) Program, which includes education of geriatrics and rehabilitation teams.</p> <p>Methods</p> <p>This is a retrospective cohort study conducted with data from two Hamilton, Ontario, university-based tertiary-care hospitals, and represents a follow-up to a previous study conducted 8 years earlier. Data pertaining to all 354 patients, age >/= 50, admitted between March 2003 and April 2004, inclusive, with a diagnosis of fragility hip fracture were evaluated. Twelve patients were excluded leaving 342 patients for analysis, with 75% female, mean age 81.</p> <p>Outcomes included: Primary – In-hospital diagnosis of osteoporosis and/or initiation of anti-resorptive treatment ("new osteoporosis diagnosis/treatment"). Secondary – In-hospital mortality, BMD referrals, pre-admission osteoporosis diagnosis and treatment.</p> <p>Results</p> <p>At admission, 27.8% of patients had a pre-existing diagnosis of osteoporosis and/or were taking anti-resorptive treatment. Among patients with no previous osteoporosis diagnosis/treatment: 35.7% received a new diagnosis of osteoporosis, 21% were initiated on anti-resorptive treatment, and 14.3% received a BMD referral. The greatest predictor of new osteoporosis diagnosis/treatment was transfer to a rehabilitation or geriatrics unit: 79.5% of rehabilitation/geriatrics versus 18.5% of patients receiving only orthopedics care met this outcome (p < 0.001).</p> <p>Conclusion</p> <p>New diagnosis of osteoporosis among patients admitted with hip fracture has improved from 1.8% in the mid 1990's to 35.7%. Initiation of bisphosphonate therapy has likewise improved from 0% to 21%. Although multiple factors have likely contributed, the differential response between rehabilitation/geriatrics versus orthopedics patients suggests that education of the geriatric and rehabilitation teams, including one-on-one and group-based sessions, implemented as part of the FTOP Program, has played a role in this improvement. A significant care gap still exists for patients discharged directly from orthopedic units. The application of targeted inpatient and post-discharge initiatives, such as those that comprise the entire FTOP Program, may be of particular value in this setting.</p
- …
