1,324 research outputs found
Observations of the Sunyaev-Zel'dovich effect at high angular resolution towards the galaxy clusters A665, A2163 and CL0016+16
We report on the first observation of the Sunyaev-Zel'dovich effect with the
Diabolo experiment at the IRAM 30 metre telescope. A significant brightness
decrement is detected in the direction of three clusters (Abell 665, Abell 2163
and CL0016+16). With a 30 arcsecond beam and 3 arcminute beamthrow, this is the
highest angular resolution observation to date of the SZ effect.Comment: 23 pages, 8 figures, 6 tables, accepted to New Astronom
An Empirical Decomposition of Near-IR Emission into Galactic and Extragalactic Components
We decompose the COBE/DIRBE observations of the near-IR sky brightness (minus
zodiacal light) into Galactic stellar and interstellar medium (ISM) components
and an extragalactic background. This empirical procedure allows us to estimate
the 4.9 micron cosmic infrared background (CIB) as a function of the CIB
intensity at shorter wavelengths. A weak indication of a rising CIB intensity
at wavelengths > 3.5 micron hints at interesting astrophysics in the CIB
spectrum, or warns that the foreground zodiacal emission may be incompletely
subtracted. Subtraction of only the stellar component from the
zodiacal-light-subtracted all-sky map reveals the clearest 3.5 micron ISM
emission map, which is found to be tightly correlated with the ISM emission at
far-IR wavelengths.Comment: 10 pages. 10 JPEG and PNG figures. Uses emulateapj5.sty. To appear in
2003, ApJ, 585, 000 (March 1, 2003
A Broadband Study of Galactic Dust Emission
We have combined infrared data with HI, H2 and HII surveys in order to
spatially decompose the observed dust emission into components associated with
different phases of the gas. An inversion technique is applied. For the
decomposition, we use the IRAS 60 and 100 micron bands, the DIRBE 140 and 240
micron bands, as well as Archeops 850 and 2096 micron wavelengths. In addition,
we apply the decomposition to all five WMAP bands. We obtain longitude and
latitude profiles for each wavelength and for each gas component in carefully
selected Galactic radius bins.We also derive emissivity coefficients for dust
in atomic, molecular and ionized gas in each of the bins.The HI emissivity
appears to decrease with increasing Galactic radius indicating that dust
associated with atomic gas is heated by the ambient interstellar radiation
field (ISRF). By contrast, we find evidence that dust mixed with molecular
clouds is significantly heated by O/B stars still embedded in their progenitor
clouds. By assuming a modified black-body with emissivity law lambda^(-1.5), we
also derive the radial distribution of temperature for each phase of the gas.
All of the WMAP bands except W appear to be dominated by emission from
something other than normal dust, most likely a mixture of thermal
bremstrahlung from diffuse ionized gas, synchrotron emission and spinning dust.
Furthermore, we find indications of an emissivity excess at long wavelengths
(lambda > 850 micron) in the outer Galaxy (R > 8.9 kpc). This suggests either
the existence of a very cold dust component in the outer Galaxy or a
temperature dependence of the spectral emissivity index. Finally, it is shown
that ~ 80% of the total FIR luminosity is produced by dust associated with
atomic hydrogen, in agreement with earlier findings by Sodroski et al. (1997).Comment: accepted for publication by A&
The High Frequency Instrument of Planck: Requirements and Design
The Planck satellite is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. It is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. The detectors of its High frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. Due to the scanning on the sky, time features of the measurement chain are directly transformed into angular features in the sky maps. This impacts the bolometer design as well as other elements: For example, the cooling system must present outstanding temperature stability, and the amplification chain must show, down to very low frequencies, a flat noise spectrum
Cosmic Background dipole measurements with Planck-High Frequency Instrument
This paper discusses the Cosmic Background (CB) dipoles observations in the
framework of the Planck mission. Dipoles observations can be used in three
ways: (i) It gives a measurement of the peculiar velocity of our Galaxy which
is an important observation in large scale structures formation model. (ii)
Measuring the dipole can give unprecedent information on the monopole (that can
be in some cases hard to obtain due to large foreground contaminations). (iii)
The dipole can be an ideal absolute calibrator, easily detectable in
cosmological experiments. Following the last two objectives, the main goal of
the work presented here is twofold. First, we study the accuracy of the
Planck-HFI calibration using the Cosmic Microwave Background (CMB) dipole
measured by COBE as well as the Earth orbital motion dipole. We show that we
can reach for HFI, a relative calibration between rings of about 1% and an
absolute calibration better than 0.4% for the CMB channels (in the end, the
absolute calibration will be limited by the uncertainties on the CMB
temperature). We also show that Planck will be able to measure the CMB dipole
direction at better than 1.7 arcmin and improve on the amplitude. Second, we
investigate the detection of the Cosmic Far-Infrared Background (FIRB) dipole.
Measuring this dipole could give a new and independent determination of the
FIRB for which a direct determination is quite difficult due to Galactic dust
emission contamination. We show that such a detection would require a Galactic
dust emission removal at better than 1%, which will be very hard to achieve.Comment: 10 pages, 13 figures, submitted to A&A, uses aa.sty V5.
Physical conditions in the ISM towards HD185418
We have developed a complete model of the hydrogen molecule as part of the
spectral simulation code Cloudy. Our goal is to apply this to spectra of
high-redshift star-forming regions where H2 absorption is seen, but where few
other details are known, to understand its implication for star formation. The
microphysics of H2 is intricate, and it is important to validate these
numerical simulations in better-understood environments. This paper studies a
well-defined line-of-sight through the Galactic interstellar medium (ISM) as a
test of the microphysics and methods we use. We present a self-consistent
calculation of the observed absorption-line spectrum to derive the physical
conditions in the ISM towards HD185418, a line-of-sight with many observables.
We deduce density, temperature, local radiation field, cosmic ray ionization
rate, chemical composition and compare these conclusions with conditions
deduced from analytical calculations. We find a higher density, similar
abundances, and require a cosmic ray flux enhanced over the Galactic background
value, consistent with enhancements predicted by MHD simulations.Comment: 31 pages, accepted for publication in Ap
Midwave infrared InAs/GaSb superlattice photodiode with a dopant-free p–n junction
Midwave infrared (MWIR) InAs/GaSb superlattice (SL) photodiode with a dopant-free p–n junction was fabricated by molecular beam epitaxy on GaSb substrate. Depending on the thickness ratio between InAs and GaSb layers in the SL period, the residual background carriers of this adjustable material can be either n-type or p-type. Using this flexibility in residual doping of the SL material, the p–n junction of the device is made with different non-intentionally doped (nid) SL structures. The SL photodiode processed shows a cut-off wavelength at 4.65 μm at 77 K, residual carrier concentration equal to 1.75 × 1015 cm−3, dark current density as low as 2.8 × 10−8 A/cm2 at 50 mV reverse bias and R0A product as high as 2 × 106 Ω cm2. The results obtained demonstrate the possibility to fabricate a SL pin photodiode without intentional doping the pn junction
Planck's Dusty GEMS: Gravitationally lensed high-redshift galaxies discovered with the Planck survey
We present an analysis of 11 bright far-IR/submm sources discovered through a
combination of the Planck survey and follow-up Herschel-SPIRE imaging. Each
source has a redshift z=2.2-3.6 obtained through a blind redshift search with
EMIR at the IRAM 30-m telescope. Interferometry obtained at IRAM and the SMA,
and optical/near-infrared imaging obtained at the CFHT and the VLT reveal
morphologies consistent with strongly gravitationally lensed sources.
Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 um
and 2 mm, respectively. All objects are bright, isolated point sources in the
18 arcsec beam of SPIRE at 250 um, with spectral energy distributions peaking
either near the 350 um or the 500 um bands of SPIRE, and with apparent
far-infrared luminosities of up to 3x10^14 L_sun. Their morphologies and sizes,
CO line widths and luminosities, dust temperatures, and far-infrared
luminosities provide additional empirical evidence that these are strongly
gravitationally lensed high-redshift galaxies. We discuss their dust masses and
temperatures, and use additional WISE 22-um photometry and template fitting to
rule out a significant contribution of AGN heating to the total infrared
luminosity. Six sources are detected in FIRST at 1.4 GHz. Four have flux
densities brighter than expected from the local far-infrared-radio correlation,
but in the range previously found for high-z submm galaxies, one has a deficit
of FIR emission, and 6 are consistent with the local correlation. The global
dust-to-gas ratios and star-formation efficiencies of our sources are
predominantly in the range expected from massive, metal-rich, intense,
high-redshift starbursts. An extensive multi-wavelength follow-up programme is
being carried out to further characterize these sources and the intense
star-formation within them.Comment: A&A accepte
Multi-wavelength analysis of the dust emission in the Small Magellanic Cloud
We present an analysis of dust grain emission in the diffuse interstellar
medium of the Small Magellanic Cloud (SMC). This study is motivated by the
availability of 170 microns ISOPHOT data covering a large part of the SMC, with
a resolution enabling to disentangle the diffuse medium from the star forming
regions. After data reduction and subtraction of Galactic foreground emission,
we used the ISOPHOT data together with HiRes IRAS data and ATCA/Parkes combined
HI column density maps to determine dust properties for the diffuse medium. We
found a far infrared emissivity per hydrogen atom 30 times lower than the Solar
Neighborhood value. The modeling of the spectral energy distribution of the
dust, taking into account the enhanced interstellar radiation field, gives a
similar conclusion for the smallest grains (PAHs and very small grains)
emitting at shorter wavelength. Assuming Galactic dust composition in the SMC,
this result implies a difference in the gas-to-dust ratio (GDR) 3 times larger
than the difference in metallicity. This low depletion of heavy elements in
dust could be specific of the diffuse ISM and not apply for the whole SMC dust
if it results from efficient destruction of dust by supernovae explosions.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy &
Astrophysic
- …
