3,949 research outputs found
Trump’s ‘Immployment’ Law Agenda: Intensifying Employment-Based Enforcement and Un-authorizing the Authorized
This article considers President Trump’s immigration efforts through an immployment law lens. Immployment is a conceptual frame that reminds us to consider (1) immigration policy’s impacts on employers and the employment-based rights of workers, and (2) employment and labor law’s impacts on immigration policy. It draws from available enforcement data to argue that Trump’s regime is intensifying the use of workplace-based immigration enforcement tools such as audits of employer records and arrests of workers at their place of work. While his predecessors used these tools too, Trump is simultaneously pursuing both high profile worker arrests and bureaucratic audits as key tools of a more aggressive immigration enforcement strategy. The Trump administration is also deviating from his predecessors by un-authorizing large groups of authorized workers. The article focuses its attention primarily on one such targeted group, workers with Temporary Protected Status (TPS), who may soon lose their authorization. It also uses interviews with two dozen immigrant worker advocates in the New York City metropolitan area to convey the ways that the threat of workplace-based immigration enforcement and unauthorization efforts are consequential for workers and the government compliance and benefits regimes that rely on voluntary participation of immigrant workers
Knee joint neuromuscular activation performance during muscle damage and superimposed fatigue
This study examined the concurrent effects of exercise-induced muscle damage and superimposed acute fatigue on the neuromuscular activation performance of the knee flexors of nine males (age: 26.7 ± 6.1yrs; height 1.81 ± 0.05m; body mass 81.2 ± 11.7kg [mean ± SD]). Measures were obtained during three experimental conditions: (i) FAT-EEVID, involving acute fatiguing exercise performed on each assessment occasion plus a single episode of eccentric exercise performed on the first occasion and after the fatigue trial; (ii) FAT, involving the fatiguing exercise only and; (iii) CON consisting of no exercise. Assessments were performed prior to (pre) and at lh, 24h, 48h, 72h, and 168h relative to the eccentric exercise. Repeated-measures ANOVAs showed that muscle damage within the FAT-EEVID condition elicited reductions of up to 38%, 24%) and 65%> in volitional peak force, electromechanical delay and rate of force development compared to baseline and controls, respectively (F[io, 80] = 2.3 to 4.6; p to 30.7%>) following acute fatigue (Fp; i6] = 4.3 to 9.1; p ; Fp, iq = 3.9; p <0.05). The safeguarding of evoked muscle activation capability despite compromised volitional performance might reveal aspects of capabilities for emergency and protective responses during episodes of fatigue and antecedent muscle damaging exercise
What kind of expertise is needed for low energy construction
The construction industry is responsible for 40% of European Union (EU) end-use emissions but addressing this is problematic, as evident from the performance gap between design intention and on-site energy performance. There is a lack of the expertise needed for low energy construction (LEC) in the UK as the complex work processes involved require ‘energy literacy’ of all construction occupations, high qualification levels, broad occupational profiles, integrated teamworking, and good communication . This research identifies the obstacles to meeting these requirements, the nature of the expertise needed to break down occupational divisions and bridge those interfaces where the main heat losses occur, and the transition pathway implied. Obstacles include a decline in the level, breadth and quality of construction vocational education and training (VET), the lack of a learning infrastructure on sites, and a fragmented employment structure. To overcome these and develop enhanced understanding of LEC requires a transformation of the existing structure of VET provision and construction employment and a new curriculum based on a broader concept of agency and backed by rigorous enforcement of standards. This can be achieved through a radical transition pathway rather than market-based solutions to a low carbon future for the construction sector
Introduction to a Special Issue on the Impact of Immigrant Legalization Initiatives: International Perspectives on Immigration and the World of Work
This article is the third in a series to celebrate the 70th anniversary of the ILR Review. The series features articles that analyze the state of research and future directions for important themes the journal has featured over its many years of publication. In this issue, we also feature a special cluster of articles and book reviews on one of the most critical labor market issues across the globe—the legalization and integration of immigrants into national labor markets.
Despite the urgent need for immigration reform in the United States, there is a paucity of US research that looks at the impact of a shift from unauthorized to legal immigrant status in the workplace. The US immigration literature has also paid little attention to immigrant legalization policies outside of the United States, despite the fact that other countries have implemented such policies with far more regularity. The articles in this special issue draw on studies of legalization initiatives in major immigrant destinations: Canada, Italy, and the United Kingdom. Together they underscore the importance of cross-national perspectives for understanding the range of legalization programs and their impact on immigrant workers, the workplace, and the labor market. These findings contribute to key questions in migration scholarship and inform the global policy debate surrounding the integration and well-being of immigrant
Persistent global power fluctuations near a dynamic transition in electroconvection
This is a study of the global fluctuations in power dissipation and light
transmission through a liquid crystal just above the onset of
electroconvection.
The source of the fluctuations is found to be the creation and annihilation
of defects. They are spatially uncorrelated and yet temporally correlated. The
temporal correlation is seen to persist for extremely long times. There seems
to be an especially close relation between defect creation/annihilat ion in
electroconvection and thermal plumes in Rayleigh-B\'enard convection
Fluctuation and Dissipation in Liquid Crystal Electroconvection
In this experiment a steady state current is maintained through a liquid
crystal thin film. When the applied voltage is increased through a threshold, a
phase transition is observed into a convective state characterized by the
chaotic motion of rolls. Above the threshold, an increase in power consumption
is observed that is manifested by an increase in the mean conductivity. A sharp
increase in the ratio of the power fluctuations to the mean power dissipated is
observed above the transition. This ratio is compared to the predictions of the
fluctuation theorem of Gallavotti and Cohen using an effective temperature
associated with the rolls' chaotic motion.Comment: 4 pages, 3 figures, revtex forma
Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides
We describe a novel biosensor based on phospholipid-coated nematic liquid crystal (LC) droplets and demonstrate the detection of Smp43, a model antimicrobial peptide (AMP) from the venom of North African scorpion Scorpio maurus palmatus. Mono-disperse lipid-coated LC droplets of diameter 16.7 ± 0.2 μm were generated using PDMS microfluidic devices with a flow-focusing configuration and were the target for AMPs. The droplets were trapped in a bespoke microfluidic trap structure and were simultaneously treated with Smp43 at gradient concentrations in six different chambers. The disruption of the lipid monolayer by the Smp43 was detected (<6 μM) at concentrations well within its biologically active range, indicated by a dramatic change in the appearance of the droplets associated with the transition from a typical radial configuration to a bipolar configuration, which is readily observed by polarizing microscopy. This suggests the system has feasibility as a drug-discovery screening tool. Further, compared to previously reported LC droplet biosensors, this LC droplet biosensor with a lipid coating is more biologically relevant and its ease of use in detecting membrane-related biological processes and interactions has the potential for development as a reliable, low-cost and disposable point of care diagnostic tool
Slightly generalized Generalized Contagion: Unifying simple models of biological and social spreading
We motivate and explore the basic features of generalized contagion, a model
mechanism that unifies fundamental models of biological and social contagion.
Generalized contagion builds on the elementary observation that spreading and
contagion of all kinds involve some form of system memory. We discuss the three
main classes of systems that generalized contagion affords, resembling: simple
biological contagion; critical mass contagion of social phenomena; and an
intermediate, and explosive, vanishing critical mass contagion. We also present
a simple explanation of the global spreading condition in the context of a
small seed of infected individuals.Comment: 8 pages, 5 figures; chapter to appear in "Spreading Dynamics in
Social Systems"; Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur
Substrate Effect on the High Temperature Oxidation Behavior of a Pt-modified Aluminide Coating. Part II: Long-term Cyclic-oxidation Tests at 1,050 C
This second part of a two-part study is devoted to the effect of the substrate on the long-term, cyclic-oxidation behavior at 1,050 C of RT22 industrial coating deposited on three Ni-base superalloys (CMSX-4, SCB, and IN792). Cyclicoxidation tests at 1,050 C were performed for up to 58 cycles of 300 h (i.e., 17,400 h of heating at 1,050 C). For such test conditions, interdiffusion between the coating and its substrate plays a larger role in the damage process of the system than during isothermal tests at 900, 1,050, and 1,150 C for 100 h and cyclicoxidation tests at 900 C which were reported in part I [N. Vialas and D. Monceau,
Oxidation of Metals 66, 155 (2006)]. The results reported in the present paper show that interdiffusion has an important effect on long-term, cyclic-oxidation resistance, so that clear differences can be observed between different superalloys protected with the same aluminide coating. Net-mass-change (NMC) curves show the better cyclic-oxidation behavior of the RT22/IN792 system whereas uncoated CMSX-4 has the best cyclic-oxidation resistance among the three superalloys studied. The importance of the interactions between the superalloy substrate and its coating is then demonstrated. The effect of the substrate on cyclic-oxidation behavior is related to the extent of oxide scale spalling and to the evolution of microstructural
features of the coatings tested. SEM examinations of coating surfaces and cross sections show that spalling on RT22/CMSX-4 and RT22/SCB was favored by the presence of deep voids localized at the coating/oxide interface. Some of these voids can act as nucleation sites for scale spallation. The formation of such interfacial
voids was always observed when the b to c0 transformation leads to the formation of a two-phase b/c0 layer in contact with the alumina scale. On the contrary, no voids
were observed in RT22/IN792, since this b to c0 transformation occurs gradually by an inward transformation of b leading to the formation of a continuous layer of c0
phase, parallel to the metal/scale interface
Integrated Refrigeration and Storage of LNG for Compositional Stability
Growing interest in liquefied natural gas (LNG) as a rocket fuel necessitates a greater technical understanding of the compositional changes due to preferential boil-off (or weathering) that occurs during long duration storage. The purity of methane in LNG can range from 90 to 98%, and is subject to preferential boil-off due to its low boiling point compared to other constituents despite the use of high-performance thermal insulation systems. Active heat extraction (i.e. refrigeration) is required to completely eliminate weathering. For future operational safety and reliability, and to better understand the quality and efficiency of the LNG as a cryofuel, a 400-liter Cryostat vessel was designed and constructed to measure the composition and temperatures of the LNG at a number of different liquid levels over long durations. The vessel is the centerpiece of a custom-designed lab-scale integrated refrigeration and storage (IRaS) system employing a pulse tube cryocooler capable of roughly 50 W of lift at 100 K. Instrumentation includes ten temperature sensors mounted on a vertical rake and five liquid sample tubes corresponding to five liquid levels. Two modes of operation are studied. The first is without refrigeration in order to determine a baseline in the change in composition, and to study stratification of the LNG. The second is performed with the cryocooler active to determine the operational parameters of the IRaS system for eliminating the weathering as well as stratification effects in the bulk liquid. The apparatus design and test method, as well as preliminary test results are presented in this paper. As a bonus in cost-saving and operational efficiency, the capability of the IRaS system to provide zero-loss capabilities such as zero boil-off (ZBO) keeping of the LNG and zero-loss filling/transfer operations are also discussed
- …
