1,577 research outputs found
Optical guiding in meter-scale plasma waveguides
We demonstrate a new highly tunable technique for generating meter-scale low
density plasma waveguides. Such guides can enable electron acceleration to tens
of GeV in a single stage. Plasma waveguides are imprinted in hydrogen gas by
optical field ionization induced by two time-separated Bessel beam pulses: The
first pulse, a J_0 beam, generates the core of the waveguide, while the delayed
second pulse, here a J_8 or J_16 beam, generates the waveguide cladding. We
demonstrate guiding of intense laser pulses over hundreds of Rayleigh lengths
with on axis plasma densities as low as N_e0=5x10^16 cm^-3
Solving variational inequalities defined on a domain with infinitely many linear constraints
We study a variational inequality problem whose domain is defined by infinitely many linear inequalities. A discretization method and an analytic center based inexact cutting plane method are proposed. Under proper assumptions, the convergence results for both methods are given. We also provide numerical examples to illustrate the proposed method
The impact of decades of human-induced environmental change on phytoplankton communities in the Belgian part of the North Sea
The camera of the fifth H.E.S.S. telescope. Part I: System description
In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S.
(High Energy Stereoscopic System) array reached their tenth year of operation
in Khomas Highlands, Namibia, a fifth telescope took its first data as part of
the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with
a highly pixelized camera in its focal plane, improves the sensitivity of the
current array by a factor two and extends its energy domain down to a few tens
of GeV.
The present part I of the paper gives a detailed description of the fifth
H.E.S.S. telescope's camera, presenting the details of both the hardware and
the software, emphasizing the main improvements as compared to previous
H.E.S.S. camera technology.Comment: 16 pages, 13 figures, accepted for publication in NIM
Apresentando alguns aspectos históricos do desenvolvimento da lógica clássica, ciência das idéias e dos processos da mente
Lógica é a ciência que tem por objeto determinar,
entre as operações intelectuais orientadas para o
conhecimento da verdade, as que são válidas e as que não
são. Estuda os processos e as condições de verdade de todo
e qualquer raciocínio. O conhecimento só é científico
quando, além de universal, é metódico e sistemático, ou
seja, lógico. Assim, a lógica se entende como método, ou
caminho que as ciências trilham para determinar e conhecer
seu objeto, e como característica geral do conhecimento
científico
A deep cut ellipsoid algorithm for convex programming
This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent some of the numerical instabilities and theoretical drawbacks usually associated with the algorithm are also provided. Moreover, for a large class of convex programs a simple proof of its rate of convergence is given and the relation with previously known results is discussed. Finally some computational results of the deep and central cut version of the algorithm applied to a min—max stochastic queue location problem are reported
General models in min-max continous location
In this paper, a class of min-max continuous location problems is discussed. After giving a complete characterization of th stationary points, we propose a simple central and deep-cut ellipsoid algorithm to solve these problems for the quasiconvex case. Moreover, an elementary convergence proof of this algorithm and some computational results are presented
Quantification of erosion/sedimentation patterns to trace the natural versus anthropogenic sediment dynamics "QUEST4D": final report
- …
