91 research outputs found
Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer.
The development of new materials with reduced noise and vibration levels is an active area of research due to concerns in various aspects of environmental noise pollution and its effects on health. Excessive vibrations also reduce the service live of the structures and limit the fields of their utilization. In oscillations, the viscoelastic moduli of a material are complex and it is their loss part - the product of the stiffness part and loss tangent - that is commonly viewed as a figure of merit in noise and vibration damping applications. The stiffness modulus and loss tangent are usually mutually exclusive properties so it is a technological challenge to develop materials that simultaneously combine high stiffness and high loss. Here we achieve this rare balance of properties by filling a solid polymer matrix with rigid inorganic spheres coated by a sub-micron layer of a viscoelastic material with a high level of internal friction. We demonstrate that this combination can be experimentally realised and that the analytically predicted behaviour is closely reproduced, thereby escaping the often termed 'Ashby' limit for mechanical stiffness/damping trade-off and offering a new route for manufacturing advanced composite structures with markedly reduced noise and vibration levels
Impact of childhood adversity on corticolimbic volumes in youth at clinical high-risk for psychosis
Childhood adversity is among the strongest risk factors for psychosis-spectrum disorders, though the nature and specificity of the biological mechanisms underlying this association remains unclear. Previous research reveals overlaps in the volumetric alterations observed in both adversity-exposed individuals and in psychosis-spectrum populations, highlighting the possibility that deviations in corticolimbic gray matter development may be one mechanism linking adversity and psychosis. Given that childhood adversity encompasses a wide range of adverse experiences, there is also a critical need to examine whether these different types of experiences have unique effects on corticolimbic regions. This study examined the association between childhood adversity and cortical, hippocampal, and amygdalar volume in a large sample of youth at clinical-high risk (CHR) for psychosis. We utilized a novel differentiated adversity approach that distinguishes exposures along dimensions of threat (e.g., abuse) and deprivation (e.g., poverty, neglect) to test for differential associations. Participants were drawn from the North American Prodromal Longitudinal Study (NAPLS) and completed an MRI scan and a retrospective assessment of childhood adversity at baseline. We found that deprivation exposure, but not threat, was uniquely associated with smaller cortical volume and smaller right hippocampal volume in CHR youth. These associations were masked in a generalized risk model that utilized a total adversity score. The findings suggest that deprivation exposures during childhood contribute to the subtle volumetric reductions observed in clinical high-risk samples and highlight the importance of disentangling different dimensions of adversity
A Study of Nuclear Transcription Factor-Kappa B in Childhood Autism
BACKGROUND: Several children with autism show regression in language and social development while maintaining normal motor milestones. A clear period of normal development followed by regression and subsequent improvement with treatment, suggests a multifactorial etiology. The role of inflammation in autism is now a major area of study. Viral and bacterial infections, hypoxia, or medication could affect both foetus and infant. These stressors could upregulate transcription factors like nuclear factor kappa B (NF-κB), a master switch for many genes including some implicated in autism like tumor necrosis factor (TNF). On this hypothesis, it was proposed to determine NF-κB in children with autism. METHODS: Peripheral blood samples of 67 children with autism and 29 control children were evaluated for NF-κB using electrophoretic mobility shift assay (EMSA). A phosphor imaging technique was used to quantify values. The fold increase over the control sample was calculated and statistical analysis was carried out using SPSS 15. RESULTS: We have noted significant increase in NF-κB DNA binding activity in peripheral blood samples of children with autism. When the fold increase of NF-κB in cases (n = 67) was compared with that of controls (n = 29), there was a significant difference (3.14 vs. 1.40, respectively; p<0.02). CONCLUSION: This finding has immense value in understanding many of the known biochemical changes reported in autism. As NF-κB is a response to stressors of several kinds and a master switch for many genes, autism may then arise at least in part from an NF-κB pathway gone awry
Effects of maternal immune activation on gene expression patterns in the fetal brain
We are exploring the mechanisms underlying how maternal infection increases the risk for schizophrenia and autism in the offspring. Several mouse models of maternal immune activation (MIA) were used to examine the immediate effects of MIA induced by influenza virus, poly(I:C) and interleukin IL-6 on the fetal brain transcriptome. Our results indicate that all three MIA treatments lead to strong and common gene expression changes in the embryonic brain. Most notably, there is an acute and transient upregulation of the α, β and γ crystallin gene family. Furthermore, levels of crystallin gene expression are correlated with the severity of MIA as assessed by placental weight. The overall gene expression changes suggest that the response to MIA is a neuroprotective attempt by the developing brain to counteract environmental stress, but at a cost of disrupting typical neuronal differentiation and axonal growth. We propose that this cascade of events might parallel the mechanisms by which environmental insults contribute to the risk of neurodevelopmental disorders such as schizophrenia and autism
Expression Profiling of Autism Candidate Genes during Human Brain Development Implicates Central Immune Signaling Pathways
The Autism Spectrum Disorders (ASD) represent a clinically heterogeneous set of conditions with strong hereditary components. Despite substantial efforts to uncover the genetic basis of ASD, the genomic etiology appears complex and a clear understanding of the molecular mechanisms underlying Autism remains elusive. We hypothesized that focusing gene interaction networks on ASD-implicated genes that are highly expressed in the developing brain may reveal core mechanisms that are otherwise obscured by the genomic heterogeneity of the disorder. Here we report an in silico study of the gene expression profile from ASD-implicated genes in the unaffected developing human brain. By implementing a biologically relevant approach, we identified a subset of highly expressed ASD-candidate genes from which interactome networks were derived. Strikingly, immune signaling through NFκB, Tnf, and Jnk was central to ASD networks at multiple levels of our analysis, and cell-type specific expression suggested glia—in addition to neurons—deserve consideration. This work provides integrated genomic evidence that ASD-implicated genes may converge on central cytokine signaling pathways
A comparison of temporal trends in United States autism prevalence to trends in suspected environmental factors
Maternal Exposure to Occupational Asthmagens During Pregnancy and Autism Spectrum Disorder in the Study to Explore Early Development
- …
