7,381 research outputs found
Derivation of the Lindblad Generator Structure by use of the It\^o Stochastic Calculus
We use the It\^o stochastic calculus to give a simple derivation of the
Lindblad form for the generator of a completely positive density matrix
evolution, by specialization from the corresponding global form for a
completely positive map. As a by-product, we obtain a generalized generator for
a completely positive stochastic density matrix evolution.Comment: Plain TEX, no figures or table
The Step-Harmonic Potential
We analyze the behavior of a quantum system described by a one-dimensional
asymmetric potential consisting of a step plus a harmonic barrier. We solve the
eigenvalue equation by the integral representation method, which allows us to
classify the independent solutions as equivalence classes of homotopic paths in
the complex plane. We then consider the propagation of a wave packet reflected
by the harmonic barrier and obtain an expression for the interaction time as a
function of the peak energy. For high energies we recover the classical
half-period limit.Comment: 19 pages, 7 figure
Do supernovae favor tachyonic Big Brake instead de Sitter?
We investigate whether a tachyonic scalar field, encompassing both dark
energy and dark matter-like features will drive our universe towards a Big
Brake singularity or a de Sitter expansion. In doing this it is crucial to
establish the parameter domain of the model, which is compatible with type Ia
supernovae data. We find the 1-sigma contours and evolve the tachyonic sytem
into the future. We conclude, that both future evolutions are allowed by
observations, Big Brake becoming increasingly likely with the increase of the
positive model parameter k.Comment: 8 pages, 6 figures, to be published in the Proceedings of the
Invisible Universe International Conference, Paris, 2009, Ed. J. M. Alimi;
v2: reference
Spacetime geometries and light trapping in travelling refractive index perturbations
In the framework of transformation optics, we show that the propagation of a
locally superluminal refractive index perturbation (RIP) in a Kerr medium can
be described, in the eikonal approximation, by means of a stationary metric,
which we prove to be of Gordon type. Under suitable hypotheses on the RIP, we
obtain a stationary but not static metric, which is characterized by an
ergosphere and by a peculiar behaviour of the geodesics, which are studied
numerically, also accounting for material dispersion. Finally, the equation to
be satisfied by an event horizon is also displayed and briefly discussed.Comment: 14 pages, 7 figure
Observational Constraints on the Generalized Chaplygin Gas
In this paper we study a quintessence cosmological model in which the dark
energy component is considered to be the Generalized Chaplygin Gas and the
curvature of the three-geometry is taken into account. Two parameters
characterize this sort of fluid, the and the parameters. We use
different astronomical data for restricting these parameters. It is shown that
the constraint agrees enough well with the astronomical
observations.Comment: Accepted by IJMPD; 18 pages; 10 Figure
Inverse Spin Hall Effect and Anomalous Hall Effect in a Two-Dimensional Electron Gas
We study the coupled dynamics of spin and charge currents in a
two-dimensional electron gas in the transport diffusive regime. For systems
with inversion symmetry there are established relations between the spin Hall
effect, the anomalous Hall effect and the inverse spin Hall effect. However, in
two-dimensional electron gases of semiconductors like GaAs, inversion symmetry
is broken so that the standard arguments do not apply. We demonstrate that in
the presence of a Rashba type of spin-orbit coupling (broken structural
inversion symmetry) the anomalous Hall effect, the spin Hall and inverse spin
Hall effect are substantially different effects. Furthermore we discuss the
inverse spin Hall effect for a two-dimensional electron gas with Rashba and
Dresselhaus spin-orbit coupling; our results agree with a recent experiment.Comment: 5 page
Reply to Comment on: Hawking radiation from ultrashort laser pulse filaments
A comment by R. Schutzhold et al. raises possible concerns and questions
regarding recent measurements of analogue Hawking radiation. We briefly reply
to the opinions expressed in the comment and sustain that the origin of the
radiation may be understood in terms of Hawking emission
Tachyon cosmology with non-vanishing minimum potential: a unified model
We investigate the tachyon condensation process in the effective theory with
non-vanishing minimum potential and its implications to cosmology. It is shown
that the tachyon condensation on an unstable three-brane described by this
modified tachyon field theory leads to lower-dimensional branes (defects)
forming within a stable three-brane. Thus, in the cosmological background, we
can get well-behaved tachyon matter after tachyon inflation, (partially)
avoiding difficulties encountered in the original tachyon cosmological models.
This feature also implies that the tachyon inflated and reheated universe is
followed by a Chaplygin gas dark matter and dark energy universe. Hence, such
an unstable three-brane behaves quite like our universe, reproducing the key
features of the whole evolutionary history of the universe and providing a
unified description of inflaton, dark matter and dark energy in a very simple
single-scalar field model.Comment: 18 p
Holographic Dark Energy Scenario and Variable Modified Chaplygin Gas
In this letter, we have considered that the universe is filled with normal
matter and variable modified Chaplygin gas. Also we have considered the
interaction between normal matter and variable modified Chaplygin gas in FRW
universe. Then we have considered a correspondence between the holographic dark
energy density and interacting variable modified Chaplygin gas energy density.
Then we have reconstructed the potential of the scalar field which describes
the variable modified Chaplygin cosmology.Comment: 4 latex pages, no figures, RevTeX styl
Dark matter effects in vacuum spacetime
We analyze a toy model describing an empty spacetime in which the motion of a
test mass (and the trajectories of photons) evidence the presence of a
continuous and homogeneous distribution of matter; however, since the
energy-momentum tensor vanishes, no real matter or energy distribution is
present at all. Thus, a hypothetical observer will conclude that he is immersed
in some sort of dark matter, even though he has no chance to directly detect
it. This suggests yet another possibility of explaining the elusive dark matter
as a purely dynamical effect due to the curvature of spacetime.Comment: 5 pages, 2 figures, expanded with comments about the exact motion and
curvature invariant
- …
