6,233 research outputs found
On Determining the Spectrum of Primordial Inhomogeneity from the COBE DMR Sky Maps: II. Results of Two Year Data Analysis
A new technique of Fourier analysis on a cut sky (Gorski, 1994) has been
applied to the two year COBE DMR sky maps. The Bayesian power spectrum
estimation results are consistent with the Harrison-Zel'dovich n=1 model. The
maximum likelihood estimates of the parameters of the power spectrum of
primordial perturbations are n=1.22 (1.02) and Q_{rms-PS}=17 (20) uK including
(excluding) the quadrupole anisotropy. The marginal likelihood function on n
renders n=1.10 \pm 0.32 (0.87 \pm 0.36).Comment: 13 pages, 4 figures included, uuencoded Postscript file. Submitted to
ApJ Letters, COBE Preprint #94-0
LISA data analysis I: Doppler demodulation
The orbital motion of the Laser Interferometer Space Antenna (LISA) produces
amplitude, phase and frequency modulation of a gravitational wave signal. The
modulations have the effect of spreading a monochromatic gravitational wave
signal across a range of frequencies. The modulations encode useful information
about the source location and orientation, but they also have the deleterious
affect of spreading a signal across a wide bandwidth, thereby reducing the
strength of the signal relative to the instrument noise. We describe a simple
method for removing the dominant, Doppler, component of the signal modulation.
The demodulation reassembles the power from a monochromatic source into a
narrow spike, and provides a quick way to determine the sky locations and
frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
Goodness-of-Fit Tests to study the Gaussianity of the MAXIMA data
Goodness-of-Fit tests, including Smooth ones, are introduced and applied to
detect non-Gaussianity in Cosmic Microwave Background simulations. We study the
power of three different tests: the Shapiro-Francia test (1972), the
uncategorised smooth test developed by Rayner and Best(1990) and the Neyman's
Smooth Goodness-of-fit test for composite hypotheses (Thomas and Pierce 1979).
The Smooth Goodness-of-Fit tests are designed to be sensitive to the presence
of ``smooth'' deviations from a given distribution. We study the power of these
tests based on the discrimination between Gaussian and non-Gaussian
simulations. Non-Gaussian cases are simulated using the Edgeworth expansion and
assuming pixel-to-pixel independence. Results show these tests behave similarly
and are more powerful than tests directly based on cumulants of order 3, 4, 5
and 6. We have applied these tests to the released MAXIMA data. The applied
tests are built to be powerful against detecting deviations from univariate
Gaussianity. The Cholesky matrix corresponding to signal (based on an assumed
cosmological model) plus noise is used to decorrelate the observations previous
to the analysis. Results indicate that the MAXIMA data are compatible with
Gaussianity.Comment: MNRAS, in pres
Non-Gaussian CMBR angular power spectra
In this paper we show how the prediction of CMBR angular power spectra
in non-Gaussian theories is affected by a cosmic covariance problem, that is
correlations impart features on any observed spectrum
which are absent from the average spectrum. Therefore the average
spectrum is rendered a bad observational prediction, and two new prediction
strategies, better adjusted to these theories, are proposed. In one we search
for hidden random indices conditional to which the theory is released from the
correlations. Contact with experiment can then be made in the form of the
conditional power spectra plus the random index distribution. In another
approach we apply to the problem a principal component analysis. We discuss the
effect of correlations on the predictivity of non-Gaussian theories. We finish
by showing how correlations may be crucial in delineating the borderline
between predictions made by non-Gaussian and Gaussian theories. In fact, in
some particular theories, correlations may act as powerful non-Gaussianity
indicators
SrKZnMnAs: a ferromagnetic semiconductor with colossal magnetoresistance
A bulk diluted magnetic semiconductor (Sr,K)(Zn,Mn)As was
synthesized with decoupled charge and spin doping. It has a hexagonal
CaAlSi-type structure with the (Zn,Mn)As layer forming
a honeycomb-like network. Magnetization measurements show that the sample
undergoes a ferromagnetic transition with a Curie temperature of 12 K and
\revision{magnetic moment reaches about 1.5 /Mn under = 5 T
and = 2 K}. Surprisingly, a colossal negative magnetoresistance, defined as
, up to 38\% under a low field of = 0.1
T and to 99.8\% under = 5 T, was observed at = 2 K. The
colossal magnetoresistance can be explained based on the Anderson localization
theory.Comment: Accepted for publication in EP
The angular power spectrum of radio emission at 2.3 GHz
We have analysed the Rhodes/HartRAO survey at 2326 MHz and derived the global
angular power spectrum of Galactic continuum emission. In order to measure the
angular power spectrum of the diffuse component, point sources were removed
from the map by median filtering. A least-square fit to the angular power
spectrum of the entire survey with a power law spectrum C_l proportional to
l^{-alpha}, gives alpha = 2.43 +/- 0.01 for l = 2-100. The angular power
spectrum of radio emission appears to steepen at high Galactic latitudes and
for observed regions with |b| > 20 deg, the fitted spectral index is alpha =
2.92 +/- 0.07. We have extrapolated this result to 30 GHz (the lowest frequency
channel of Planck) and estimate that no significant contribution to the sky
temperature fluctuation is likely to come from synchrotron at degree-angular
scalesComment: 10 pages, 10 figures, accepted for publication by Astronomy &
Astrophysic
- …
