617 research outputs found
Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al(2)O(3)/Si cells
In this letter, we explore the influence of the Cu(x)Te(1-x) layer composition (0.2 0.7 leads to large reset power, similar to pure-Cu electrodes, x < 0.3 results in volatile forming properties. The intermediate range 0.5< x < 0.7 shows optimum memory properties, featuring improved control of filament programming using <5 mu A as well as state stability at 85 degrees C. The composition-dependent programming control and filament stability are closely associated with the phases in the Cu(x)Te(1-x) layer and are explained as related to the chemical affinity between Cu and Te. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3621835
A deep level transient spectroscopy study of hole traps in GexSe1-x-based layers for ovonic threshold switching selectors
status: publishe
Introduction of WO3 Layer in a Cu-Based Al2O3 Conductive Bridge RAM System for Robust Cycling and Large Memory Window
In this paper, we optimize a WO3\Al2O3 bilayer serving as the electrolyte of a conductive bridge RAM device using a Cu-based supply layer. By introducing a WO3 layer formed by thermal oxidation of a W plug, the hourglass shape of the conductive filament is desirably controlled, enabling excellent switching behavior. We demonstrate a clear improvement of the microstructure and density of the WO3 layer by increasing the oxidation time and temperature, resulting in a strong increase of the high-resistance-state breakdown voltage. The high quality WO3 microstructure allows thus the use of a larger reset pulse amplitude resulting both in larger memory window and failure-free write cycling.1197Ysciescopu
The over-reset phenomenon in Ta2O5 RRAM device investigated by the RTN-based defect probing technique
IEEE Despite the tremendous efforts in the past decade devoted to the development of filamentary resistive-switching devices (RRAM), there is still a lack of in-depth understanding of its over-reset phenomenon. At higher reset stop voltages that exceed a certain threshold, the resistance at high resistance state reduces, leading to an irrecoverable window reduction. The over-reset phenomenon limits the maximum resistance window that can be achieved by using a higher Vreset, which also degrades its potential in applications such as multi-level memory and neuromorphic synapses. In this work, the over-reset is investigated by cyclic reset operations with incremental stop voltages, and is explained by defect generation in the filament constriction region of Ta2O5 RRAM devices. This is supported by the statistical spatial defects profile obtained from the random telegraph noise based defect probing technique. The impact of forming compliance current on the over-reset is also evaluated
Doped GeSe materials for selector applications
We report on the thermal and electrical performance of nitrogen (N) and carbon (C) doped GeSe thin films for selector applications. Doping of GeSe successfully improved its thermal stability to 450 degrees C. N doping led to a decrease in the off-state leakage and an increase in threshold voltage (V-th), while C doping led to an increase in leakage and reduced V-th. Hence, we show an effective method to tune the electrical parameters of GeSe selectors by using N and C as dopants
Investigation of pre-existing and generated defects in non-filamentary a-Si/TiO2 RRAM and their impacts on RTN amplitude distribution
An extensive investigation of the pre-existing and generated defects in amorphous-Si/TiO2 based non-filamentary (a-VMCO) RRAM device has been carried out in this work to identify the switching and degradation mechanisms, through a combination of random-telegraph-noise (RTN) and constant- voltage-stress (CVS) analysis. The amplitude of RTN, which leads to read instability, is also evaluated statistically at different stages of cell degradation and correlated with different defects, for the first time. It is found that the switching between low and high resistance states (LRS and HRS) are correlated with the profile modulation of pre-existing defects in the ‘defect-less’ region near the a-Si/TiO2 interface. The RTN amplitude observed at this stage is small and has a tight distribution. At longer stress times, a percolation path is formed due to defects generation, which introduces larger RTN amplitude and a significant tail in its distribution
Employment Expectations and Gross Flows by Type of Work Contract
There is growing interest in understanding firms’ temporary and permanent employment practices and how institutional changes shape them. Using data on Spanish establishments, we examine: (a) how employers adjust temporary and permanent job and worker flows to prior employment expectations, and (b) how the 1994 and 1997 labour reforms promoting permanent employment affected establishments’ employment practices. Generally, establishments’ prior employment expectations are realized through changes in all job and worker flows. However, establishments uniquely rely on temporary hires as a buffer to confront diminishing long-run employment expectations. None of the reforms significantly affected establishments’ net temporary or permanent employment flows.http://deepblue.lib.umich.edu/bitstream/2027.42/40032/3/wp646.pd
Optical Transitions in Single-Wall Boron Nitride Nanotubes
Optical transitions in single-wall boron nitride nanotubes are investigated by means of optical absorption spectroscopy. Three absorption lines are observed. Two of them (at 4.45 and 5.5 eV) result from the quantification involved by the rolling up of the hexagonal boron nitride (h-BN) sheet. The nature of these lines is discussed, and two interpretations are proposed. A comparison with single-wall carbon nanotubes leads one to interpret these lines as transitions between pairs of van Hove singularities in the one-dimensional density of states of boron nitride single-wall nanotubes. But the confinement energy due to the rolling up of the h-BN sheet cannot explain a gap width of the boron nitride nanotubes below the h-BN gap. The low energy line is then attributed to the existence of a Frenkel exciton with a binding energy in the 1 eV range
Microscopic origin of random telegraph noise fluctuations in aggressively scaled RRAM and its impact on read disturb variability
Random telegraph noise (RTN) is an important intrinsic phenomenon of any logic or memory device that is indicative of the reliability and stochastic variability in its performance. In the context of the resistive random access memory (RRAM), RTN becomes a key criterion that determines the read disturb immunity and memory window between the low (LRS) and high resistance states (HRS). With the drive towards ultra-low power memory (low reset current) and aggressive scaling to 10 × 10 nm2 area, contribution of RTN is significantly enhanced by every trap (vacancy) in the dielectric. The underlying mechanisms governing RTN in RRAM are yet to be fully understood. In this study, we aim to decode the role of conductance fluctuations caused by oxygen vacancy transport and inelastic electron trapping and detrapping processes. The influence of resistance state (LRS, shallow and deep HRS), reset depth and reset stop voltage (VRESET-STOP) on the conductance variability is also investigated. © 2013 IEEE
Secondary nucleating sequences affect kinetics and thermodynamics of tau aggregation
Tau protein was scanned for highly amyloidogenic sequences in amphiphilic motifs (X)nZ, Z(X)nZ (n≥2) or (XZ)n (n≥2), where X is a hydrophobic residue and Z is a charged or polar residue. N-acetyl peptides homologous to these sequences were used to study aggregation. Transmission electron microscopy (TEM) showed 7 peptides, in addition to well known primary nucleating sequences c275VQIINK (AcPHF6*) and Ac306VQIVYK (AcPHF6), formed fibers, tubes, ribbons or rolled sheets. Of the peptides shown by TEM to form amyloid, Ac10VME, AcPHF6*, Ac375KLTFR, and Ac393VYK were found to enhance the fraction of β-structure of AcPHF6 formed at equilibrium, and Ac375KLTFR was found to inhibit AcPHF6 and AcPHF6* aggregation kinetics in a dose-dependent manner, consistent with its participation in a hybrid steric zipper model. Single site mutants were generated which transformed predicted amyloidogenic sequences in tau into non-amyloidogenic ones. A M11K mutant had fewer filaments and showed a decrease in aggregation kinetics and an increased lag time compared to wild type tau, while a F378K mutant showed significantly more filaments. Our results infer that sequences throughout tau, in addition to PHF6 and PHF6*, can seed amyloid formation or affect aggregation kinetics or thermodynamics
- …
