809 research outputs found
Meta-Tracker: Fast and Robust Online Adaptation for Visual Object Trackers
This paper improves state-of-the-art visual object trackers that use online
adaptation. Our core contribution is an offline meta-learning-based method to
adjust the initial deep networks used in online adaptation-based tracking. The
meta learning is driven by the goal of deep networks that can quickly be
adapted to robustly model a particular target in future frames. Ideally the
resulting models focus on features that are useful for future frames, and avoid
overfitting to background clutter, small parts of the target, or noise. By
enforcing a small number of update iterations during meta-learning, the
resulting networks train significantly faster. We demonstrate this approach on
top of the high performance tracking approaches: tracking-by-detection based
MDNet and the correlation based CREST. Experimental results on standard
benchmarks, OTB2015 and VOT2016, show that our meta-learned versions of both
trackers improve speed, accuracy, and robustness.Comment: Code: https://github.com/silverbottlep/meta_tracker
Photogenerated Carriers in SrTiO3 Probed by Mid-Infrared Absorption
Infrared absorption spectra of SrTiO have been measured under
above-band-gap photoexcitations to study the properties of photogenerated
carriers, which should play important roles in previously reported photoinduced
phenomena in SrTiO. A broad absorption band appears over the entire
mid-infrared region under photoexcitation. Detailed energy, temperature, and
excitation power dependences of the photoinduced absorption are reported. This
photo-induced absorption is attributed to the intragap excitations of the
photogenerated carriers. The data show the existence of a high density of
in-gap states for the photocarriers, which extends over a wide energy range
starting from the conduction and valence band edges.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
Existence of a Meromorphic Extension of Spectral Zeta Functions on Fractals
We investigate the existence of the meromorphic extension of the spectral
zeta function of the Laplacian on self-similar fractals using the classical
results of Kigami and Lapidus (based on the renewal theory) and new results of
Hambly and Kajino based on the heat kernel estimates and other probabilistic
techniques. We also formulate conjectures which hold true in the examples that
have been analyzed in the existing literature
Localización del poder en el Perú: reflexiones en torno a la representación de la indigenidad y femineidad en tres novelas peruanas
Rewritable nanoscale oxide photodetector
Nanophotonic devices seek to generate, guide, and/or detect light using
structures whose nanoscale dimensions are closely tied to their functionality.
Semiconducting nanowires, grown with tailored optoelectronic properties, have
been successfully placed into devices for a variety of applications. However,
the integration of photonic nanostructures with electronic circuitry has always
been one of the most challenging aspects of device development. Here we report
the development of rewritable nanoscale photodetectors created at the interface
between LaAlO3 and SrTiO3. Nanowire junctions with characteristic dimensions
2-3 nm are created using a reversible AFM writing technique. These nanoscale
devices exhibit a remarkably high gain for their size, in part because of the
large electric fields produced in the gap region. The photoconductive response
is gate-tunable and spans the visible-to-near-infrared regime. The ability to
integrate rewritable nanoscale photodetectors with nanowires and transistors in
a single materials platform foreshadows new families of integrated
optoelectronic devices and applications.Comment: 5 pages, 5 figures. Supplementary Information 7 pages, 9 figure
Towards a sensitive search for variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium
It has been proposed that the radio-frequency electric-dipole (E1) transition
between two nearly degenerate opposite-parity states in atomic dysprosium
should be highly sensitive to possible temporal variation of the fine structure
constant () [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A
{\bf 59}, 230 (1999)]. We analyze here an experimental realization of the
proposed search in progress in our laboratory, which involves monitoring the E1
transition frequency over a period of time using direct frequency counting
techniques. We estimate that a statistical sensitivity of |\adota| \sim
10^{-18}/yr may be achieved and discuss possible systematic effects that may
limit such a measurement.Comment: 8 pages, 7 figure
Average distances on self-similar sets and higher order average distances of self-similar measures
The purpose of this paper is twofold: (1) we study different notions of the average distance between two points of a self-similar subset of ℝ, and (2) we investigate the asymptotic behaviour of higher order average moments of self-similar measures on self-similar subsets of ℝ
On the Lebesgue measure of Li-Yorke pairs for interval maps
We investigate the prevalence of Li-Yorke pairs for and
multimodal maps with non-flat critical points. We show that every
measurable scrambled set has zero Lebesgue measure and that all strongly
wandering sets have zero Lebesgue measure, as does the set of pairs of
asymptotic (but not asymptotically periodic) points.
If is topologically mixing and has no Cantor attractor, then typical
(w.r.t. two-dimensional Lebesgue measure) pairs are Li-Yorke; if additionally
admits an absolutely continuous invariant probability measure (acip), then
typical pairs have a dense orbit for . These results make use of
so-called nice neighborhoods of the critical set of general multimodal maps,
and hence uniformly expanding Markov induced maps, the existence of either is
proved in this paper as well.
For the setting where has a Cantor attractor, we present a trichotomy
explaining when the set of Li-Yorke pairs and distal pairs have positive
two-dimensional Lebesgue measure.Comment: 41 pages, 3 figure
Laplace Operators on Fractals and Related Functional Equations
We give an overview over the application of functional equations, namely the
classical Poincar\'e and renewal equations, to the study of the spectrum of
Laplace operators on self-similar fractals. We compare the techniques used to
those used in the euclidean situation. Furthermore, we use the obtained
information on the spectral zeta function to define the Casimir energy of
fractals. We give numerical values for this energy for the Sierpi\'nski gasket
Fortified Settlements of the 9th and 10th Centuries ad in Central Europe: structure, function and symbolism
Open access article. © Society for Medieval Archaeology 2012.The structure, function(s)and symbolism of early medieval (9th-10th centuries ad) fortified settlements from central Europe, in particular today's Austria, Hungary, Czech Republic and Slovakia, are examined in this paper. It offers an overview of the current state of research together with new insights based on analysis of the site of Gars-Thunau in Lower Austria. Special emphasis is given to the position of the fortified sites in the landscape, to the elements of the built environment and their spatial organisation, as well as to graves within the fortified area. The region under study was situated on the SE border of the Carolingian (and later the Ottonian) Empire, with some of the discussed sites lying in the territory of the 'Great Moravian Empire' in the 9th and 10th centuries. These sites can therefore provide important comparative data for researchers working in other parts of the Carolingian Empire and neighbouring regions.Alexander von Humboldt
FoundationAustrian Science Fun
- …
