318 research outputs found
Comparison of primordial tensor power spectra from the deformed algebra and dressed metric approaches in loop quantum cosmology
Loop quantum cosmology tries to capture the main ideas of loop quantum
gravity and to apply them to the Universe as a whole. Two main approaches
within this framework have been considered to date for the study of
cosmological perturbations: the dressed metric approach and the deformed
algebra approach. They both have advantages and drawbacks. In this article, we
accurately compare their predictions. In particular, we compute the associated
primordial tensor power spectra. We show -- numerically and analytically --
that the large scale behavior is similar for both approaches and compatible
with the usual prediction of general relativity. The small scale behavior is,
the other way round, drastically different. Most importantly, we show that in a
range of wavenumbers explicitly calculated, both approaches do agree on
predictions that, in addition, differ from standard general relativity and do
not depend on unknown parameters. These features of the power spectrum at
intermediate scales might constitute a universal loop quantum cosmology
prediction that can hopefully lead to observational tests and constraints. We
also present a complete analytical study of the background evolution for the
bouncing universe that can be used for other purposes.Comment: 15 pages, 7 figure
Semiclassical scalar propagators in curved backgrounds: formalism and ambiguities
The phenomenology of quantum systems in curved space-times is among the most
fascinating fields of physics, allowing --often at the gedankenexperiment
level-- constraints on tentative theories of quantum gravity. Determining the
dynamics of fields in curved backgrounds remains however a complicated task
because of the highly intricate partial differential equations involved,
especially when the space metric exhibits no symmetry. In this article, we
provide --in a pedagogical way-- a general formalism to determine this dynamics
at the semiclassical order. To this purpose, a generic expression for the
semiclassical propagator is computed and the equation of motion for the
probability four-current is derived. Those results underline a direct analogy
between the computation of the propagator in general relativistic quantum
mechanics and the computation of the propagator for stationary systems in
non-relativistic quantum mechanics. A possible application of this formalism to
curvature-induced quantum interferences is also discussed.Comment: New materials on gravitationally-induced quantum interferences has
been adde
Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed.
In Arabidopsis thaliana, proanthocyanidins (PAs) accumulate in the innermost cell layer of the seed coat (i.e. endothelium, chalaza and micropyle). The expression of the biosynthetic genes involved relies on the transcriptional activity of R2R3-MYB and basic helix-loop-helix (bHLH) proteins which form ternary complexes (\u27MBW\u27) with TRANSPARENT TESTA GLABRA1 (TTG1) (WD repeat protein). The identification of the direct targets and the determination of the nature and spatio-temporal activity of these MBW complexes are essential steps towards a comprehensive understanding of the transcriptional mechanisms that control flavonoid biosynthesis. In this study, various molecular, genetic and biochemical approaches were used. Here, we have demonstrated that, of the 12 studied genes of the pathway, only dihydroflavonol-4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), BANYULS (BAN), TRANSPARENT TESTA 19 (TT19), TT12 and H(+) -ATPase isoform 10 (AHA10) are direct targets of the MBW complexes. Interestingly, although the TT2-TT8-TTG1 complex plays the major role in developing seeds, three additional MBW complexes (i.e. MYB5-TT8-TTG1, TT2-EGL3-TTG1 and TT2-GL3-TTG1) were also shown to be involved, in a tissue-specific manner. Finally, a minimal promoter was identified for each of the target genes of the MBW complexes. Altogether, by answering fundamental questions and by demonstrating or invalidating previously made hypotheses, this study provides a new and comprehensive view of the transcriptional regulatory mechanisms controlling PA and anthocyanin biosynthesis in Arabidopsis
Estimating the tensor-to-scalar ratio and the effect of residual foreground contamination
We consider future balloon-borne and ground-based suborbital experiments
designed to search for inflationary gravitational waves, and investigate the
impact of residual foregrounds that remain in the estimated cosmic microwave
background maps. This is achieved by propagating foreground modelling
uncertainties from the component separation, under the assumption of a
spatially uniform foreground frequency scaling, through to the power spectrum
estimates, and up to measurement of the tensor to scalar ratio in the parameter
estimation step. We characterize the error covariance due to subtracted
foregrounds, and find it to be subdominant compared to instrumental noise and
sample variance in our simulated data analysis. We model the unsubtracted
residual foreground contribution using a two-parameter power law and show that
marginalization over these foreground parameters is effective in accounting for
a bias due to excess foreground power at low . We conclude that, at least
in the suborbital experimental setups we have simulated, foreground errors may
be modeled and propagated up to parameter estimation with only a slight
degradation of the target sensitivity of these experiments derived neglecting
the presence of the foregrounds.Comment: 19 pages, 12 figures, accepted for publication in JCA
TeV-Scale Black Hole Lifetimes in Extra-Dimensional Lovelock Gravity
We examine the mass loss rates and lifetimes of TeV-scale extra dimensional
black holes (BH) in ADD-like models with Lovelock higher-curvature terms
present in the action. In particular we focus on the predicted differences
between the canonical and microcanonical ensemble statistical mechanics
descriptions of the Hawking radiation that results in the decay of these BH. In
even numbers of extra dimensions the employment of the microcanonical approach
is shown to generally lead to a significant increase in the BH lifetime as in
case of the Einstein-Hilbert action. For odd numbers of extra dimensions,
stable BH remnants occur when employing either description provided the highest
order allowed Lovelock invariant is present. However, in this case, the time
dependence of the mass loss rates obtained employing the two approaches will be
different. These effects are in principle measurable at future colliders.Comment: 27 pages, 9 figs; Refs. and discussion adde
Low energy antideuterons: shedding light on dark matter
Low energy antideuterons suffer a very low secondary and tertiary
astrophysical background, while they can be abundantly synthesized in dark
matter pair annihilations, therefore providing a privileged indirect dark
matter detection technique. The recent publication of the first upper limit on
the low energy antideuteron flux by the BESS collaboration, a new evaluation of
the standard astrophysical background, and remarkable progresses in the
development of a dedicated experiment, GAPS, motivate a new and accurate
analysis of the antideuteron flux expected in particle dark matter models. To
this extent, we consider here supersymmetric, universal extra-dimensions (UED)
Kaluza-Klein and warped extra-dimensional dark matter models, and assess both
the prospects for antideuteron detection as well as the various related sources
of uncertainties. The GAPS experiment, even in a preliminary balloon-borne
setup, will explore many supersymmetric configurations, and, eventually, in its
final space-borne configuration, will be sensitive to primary antideuterons
over the whole cosmologically allowed UED parameter space, providing a search
technique which is highly complementary with other direct and indirect dark
matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA
Hawking emission from quantum gravity black holes
We address the issue of modelling quantum gravity effects in the evaporation
of higher dimensional black holes in order to go beyond the usual
semi-classical approximation. After reviewing the existing six families of
quantum gravity corrected black hole geometries, we focus our work on
non-commutative geometry inspired black holes, which encode model independent
characteristics, are unaffected by the quantum back reaction and have an
analytical form compact enough for numerical simulations. We consider the
higher dimensional, spherically symmetric case and we proceed with a complete
analysis of the brane/bulk emission for scalar fields. The key feature which
makes the evaporation of non-commutative black holes so peculiar is the
possibility of having a maximum temperature. Contrary to what happens with
classical Schwarzschild black holes, the emission is dominated by low frequency
field modes on the brane. This is a distinctive and potentially testable
signature which might disclose further features about the nature of quantum
gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections,
version matching that published on JHE
Loop quantum gravity: the first twenty five years
This is a review paper invited by the journal "Classical ad Quantum Gravity"
for a "Cluster Issue" on approaches to quantum gravity. I give a synthetic
presentation of loop gravity. I spell-out the aims of the theory and compare
the results obtained with the initial hopes that motivated the early interest
in this research direction. I give my own perspective on the status of the
program and attempt of a critical evaluation of its successes and limits.Comment: 24 pages, 3 figure
The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article
Dryland Malt Barley Yield and Quality Affected by Tillage, Cropping Sequence, and Nitrogen Fertilization
Malt barley (Hordeum vulgare L.) yield and quality have been evaluated using various cultivars and N rates but little is known about the effects of tillage and cropping sequence. We evaluated the effects of tillage, cropping sequence, and N fertilization on dryland malt barley yield, grain characteristics, N uptake, and N use-efficiency from 2006 to 2011 in eastern Montana. Treatments were no-till continuous malt barley (NTCB), no-till malt barley–pea (Pisum sativum L.) (NTB–P), no-till malt barley–fallow (NTB–F), and conventional till malt barley–fallow (CTB–F), with split application of N rates (0,40, 80, and 120 kg N ha–1) in randomized complete block with three replications. As N rates increased, malt barley grain yield, protein concentration, and N uptake increased in NTB–F, NTB–P, and NTCB, but test weight, plumpness, and N-use efficiency decreased in all tillage and cropping sequence treatments. Similarly, plant stand, biomass (stems and leaves) yield, and N uptake increased with increased N rates. Grain and biomass yields, N uptake, and N-use efficiency were greater in CTB–F than in NTB–P and NTCB but tillage had no effect on these parameters. Malt barley yield and N uptake varied with cropping sequences and N rates among years. Although grain yield increased with increased N rates, NTB–P with N rates between 40 and 80 kg N ha−1 may be used to sustain dryland malt barley yield and quality (protein concentration \u3c 135 g kg−1, plumpness \u3e 800 g kg−1), thereby helping to reduce the potentials for soil erosion and N leaching and increase soil organic matter in the northern Great Plains
- …
