5,613 research outputs found
The chamber formation cycle in Nautilus macromphalus
The chamber formation cycle in externally shelled, chambered cephalopods consists of mural ridge formation, secretion of the siphuncular connecting ring, septal calcification, and cameral liquid removal. Radiographic observation of the chamber formation cycle in specimens of Nautilus macromphalus allows direct observation of the various processes of the chamber formation cycle in a chambered cephalopod, and gives direct measures of rates. New chamber formation in N. macromphalus initiates when slightly more than half of the cameral liquid has been removed from the last formed chamber. At this volume, the liquid within the chamber drops from direct contact with the permeable connecting ring to a level where it is no longer in direct contact and must move onto the connecting ring due to wettable properties of the septal face and septal neck. This change from “coupled” to “decoupled” emptying coincides with the formation of a mural ridge at the rear of the body chamber, in front of the last formed septum. With completion of the mural ridge, the septal mantle moves forward from its position against the face of the last formed septum and attaches to the new mural ridge, where it begins calcifying a new septum in front of the newly created, liquid-filled space. Emptying of the new cameral liquid from this space commences when the calcifying septum has reached from one-third to two-thirds of its final thickness. The cessation of calcification of the septum coincides with a liquid volume in the new chamber of approximately 50%, at which point the cycle begins anew. During the chamber formation cycle apertural shell growth appears to be continuous. Since apertural shell growth is the prime factor leading to increased density in seawater, and hence decreased buoyancy, the period in the chamber formation cycle between the onset of septal calcification and the onset of emptying would be a time of greatly decreasing buoyancy. This is avoided by the removal of decoupled liquid from previously produced chambers. In this way constant neutral buoyancy is maintained. The time between chamber formation events in aquarium maintained N. macromphalus appears to be between 70 and 120 d.</jats:p
Horava-Lifshitz gravity: tighter constraints for the Kehagias-Sfetsos solution from new solar system data
We analytically work out the perturbation induced by the Kehagias-Sfetsos
(KS) space-time solution of the Horava-Lifshitz (HL) modified gravity at long
distances on the two-body range for a pair of test particles A and B orbiting
the same mass M. We apply our results to the most recently obtained
range-residuals \delta\rho for some planets of the solar system (Mercury, Mars,
Saturn) ranged from the Earth to effectively constrain the dimensionsless KS
parameter \psi_0 for the Sun. We obtain \psi_0 >= 7.2 x 10^-10 (Mercury),
\psi_0 >= 9 x 10^-12 (Mars), \psi_0 >= 1.7 x 10^-12 (Saturn). Such lower bounds
are tighter than other ones existing in literature by several orders of
magnitude. We also preliminarily obtain \psi_0 >= 8 x 10^-10 for the system
constituted by the S2 star orbiting the Supermassive Black Hole (SBH) in the
center of the Galaxy.Comment: LaTex2e, 15 pages, 1 table, 3 figures, 31 references. Version
matching the one at press in International Journal of Modern Physics D
(IJMPD
Secondary Electron Yield Measurements of Fermilab's Main Injector Vacuum Vessel
We discuss the progress made on a new installation in Fermilab's Main
Injector that will help investigate the electron cloud phenomenon by making
direct measurements of the secondary electron yield (SEY) of samples irradiated
in the accelerator. In the Project X upgrade the Main Injector will have its
beam intensity increased by a factor of three compared to current operations.
This may result in the beam being subject to instabilities from the electron
cloud. Measured SEY values can be used to further constrain simulations and aid
our extrapolation to Project X intensities. The SEY test-stand, developed in
conjunction with Cornell and SLAC, is capable of measuring the SEY from samples
using an incident electron beam when the samples are biased at different
voltages. We present the design and manufacture of the test-stand and the
results of initial laboratory tests on samples prior to installation.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012)
20-25 May 2012, New Orleans, Louisian
The Fairy Tale Model:Secure Facility Therapist Perceptions
The current exploratory qualitative study sought to investigate novice therapist experience of implementing a phased trauma recovery approach, the Fairy Tale Model (FTM), in secure accommodation in Scotland. Participants were ten therapists trained and supervised in FTM over a 6 month period. Therapists delivered FTM to 37 youth. Individual interviews with therapists were based on the objectives of FTM, and explored the benefits, challenges and facilitating factors for both youth and therapists. Perceived benefits for therapists included increases in trauma-informed knowledge, skills, and confidence. Youth were perceived by therapists, to be less emotionally dysregulated and more motivated, hopeful, and communicative. Challenges for therapists involved the complexity of youth difficulties, competing work demands, difficulties unlearning established approaches, and short duration placements. Prioritizing therapy, intensive sessions, and frequent communication with care staff were seen as facilitating factors. Recommendations are made for FTM delivery and more robust mixed methods evaluative research including therapist, youth and other stakeholder perspectives
When Models Interact with their Subjects: The Dynamics of Model Aware Systems
A scientific model need not be a passive and static descriptor of its
subject. If the subject is affected by the model, the model must be updated to
explain its affected subject. In this study, two models regarding the dynamics
of model aware systems are presented. The first explores the behavior of
"prediction seeking" (PSP) and "prediction avoiding" (PAP) populations under
the influence of a model that describes them. The second explores the
publishing behavior of a group of experimentalists coupled to a model by means
of confirmation bias. It is found that model aware systems can exhibit
convergent random or oscillatory behavior and display universal 1/f noise. A
numerical simulation of the physical experimentalists is compared with actual
publications of neutron life time and {\Lambda} mass measurements and is in
good quantitative agreement.Comment: Accepted for publication in PLoS-ON
Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions
During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus
Observation of Ion Cyclotron Range of Frequencies Mode Conversion Flow Drive in Tokamak Plasmas
License prices for financially constrained firms
It is often alleged that high auction prices inhibit service deployment. We investigate this claim under the extreme case of financially constrained bidders. If demand is just slightly elastic, auctions maximize consumer surplus if consumer surplus is a convex function of quantity (a common assumption), or if consumer surplus is concave and the proportion of expenditure spent on deployment is greater than one over the elasticity of demand. The latter condition appears to be true for most of the large telecom auctions in the US and Europe. Thus, even if high auction prices inhibit service deployment, auctions appear to be optimal from the consumers’ point of view
- …
