595 research outputs found

    Multi-Frequency Study of the B3-VLA Sample II. The Database

    Full text link
    We present total flux densities of 1049 radio sources in the frequency range from 151 MHz to 10.6 GHz. These sources belong to the B3-VLA sample, which is complete down to 100 mJy at 408 MHz. The data constitute a homogeneous spectral database for a large sample of radio sources, 50 times fainter than the 3C catalogue, and will be used to perform a spectral ageing analysis, which is one of the critical points in understanding the physics and evolution of extragalactic radio sources.Comment: 14 pages, 3 figures, accepted for publication in Astronomy & Astrophysics Supplement Series, gzipped postscript file also available at http://multivac.jb.man.ac.uk:8000/ceres/papers/papers.html or http://gladia.astro.rug.nl:8000/ceres/papers/papers.htm

    Structure of the magnetoionic medium around the FR Class I radio galaxy 3C 449

    Full text link
    The goal of this work is to constrain the strength and structure of the magnetic field associated with the environment of the radio source 3C 449, using observations of Faraday rotation, which we model with a structure function technique and by comparison with numerical simulations. We assume that the magnetic field is a Gaussian, isotropic random variable and that it is embedded in the hot intra-group plasma surrounding the radio source. For this purpose, we present detailed rotation measure images for the polarized radio source 3C 449, previously observed with the Very Large Array at seven frequencies between 1.365 and 8.385 GHz. We quantify the statistics of the magnetic-field fluctuations by deriving rotation measure structure functions, which we fit using models derived from theoretical power spectra. We quantify the errors due to sampling by making multiple two-dimensional realizations of the best-fitting power spectrum.We also use depolarization measurements to estimate the minimum scale of the field variations. We then make three-dimensional models with a gas density distribution derived from X-ray observations and a random magnetic field with this power spectrum. Under these assumptions we find that both rotation measure and depolarization data are consistent with a broken power-law magnetic-field power spectrum, with a break at about 11 kpc and slopes of 2.98 and 2.07 at smaller and larger scales respectively. The maximum and minimum scales of the fluctuations are around 65 and 0.2 kpc, respectively. The average magnetic field strength at the cluster centre is 3.5 +/-1.2 micro-G, decreasing linearly with the gas density within about 16 kpc of the nucleus.Comment: 19 pages; 14 figures; accepted for publication on A&A. For a high quality version use ftp://ftp.eso.org/pub/general/guidetti

    Dumb-bell galaxies in southern clusters: Catalog and preliminary statistical results

    Get PDF
    The dominant galaxy of a rich cluster is often an object whose formation and evolution is closely connected to the dynamics of the cluster itself. Hoessel (1980) and Schneider et al. (1983) estimate that 50 percent of the dominant galaxies are either of the dumb-bell type or have companions at projected distances less than 20 kpc, which is far in excess of the number expected from chance projection (see also Rood and Leir 1979). Presently there is no complete sample of these objects, with the exception of the listing of dumb-bell galaxies in BM type I and I-II clusters in the Abell statistical sample of Rood and Leir (1979). Recent dynamical studies of dumb-bell galaxies in clusters (Valentijn and Casertano, 1988) still suffer from inhomogeneity of the sample. The fact that it is a mixture of optically and radio selected objects may have introduced an unknown biases, for instance if the probability of radio emission is enhanced by the presence of close companions (Stocke, 1978, Heckman et al. 1985, Vettolani and Gregorini 1988) a bias could be present in their velocity distribution. However, this situation is bound to improve: a new sample of Abell clusters in the Southern Hemisphere has been constructed (Abell et al., 1988 hereafter ACO), which has several advantages over the original northern catalog. The plate material (IIIaJ plates) is of better quality and reaches fainter magnitudes. This makes it possible to classify the cluster types with a higher degree of accuracy, as well as to fainter magnitudes. The authors therefore decided to reconsider the whole problem constructing a new sample of dumb-bell galaxies homogeneously selected from the ACO survey. Details of the classification criteria are given

    Polarization Properties of Extragalactic Radio Sources and Their Contribution to Microwave Polarization Fluctuations

    Get PDF
    We investigate the statistical properties of the polarized emission of extragalactic radio sources and estimate their contribution to the power spectrum of polarization fluctuations in the microwave region. The basic ingredients of our analysis are the NVSS polarization data, the multifrequency study of polarization properties of the B3-VLA sample (Mack et al. 2002) which has allowed us to quantify Faraday depolarization effects, and the 15 GHz survey by Taylor et al. (2001), which has provided strong constraints on the high-frequency spectral indices of sources. The polarization degree of both steep- and flat-spectrum at 1.4 GHz is found to be anti-correlated with the flux density. The median polarization degree at 1.4 GHz of both steep- and flat-spectrum sources brighter than S(1.4GHz)=80S(1.4 \hbox{GHz})=80 mJy is 2.2\simeq 2.2%. The data by Mack et al. (2002) indicate a substantial mean Faraday depolarization at 1.4 GHz for steep spectrum sources, while the depolarization is undetermined for most flat/inverted-spectrum sources. Exploiting this complex of information we have estimated the power spectrum of polarization fluctuations due to extragalactic radio sources at microwave frequencies. We confirm that extragalactic sources are expected to be the main contaminant of Cosmic Microwave Background (CMB) polarization maps on small angular scales. At frequencies <30< 30 GHz the amplitude of their power spectrum is expected to be comparable to that of the EE-mode of the CMB. At higher frequencies, however, the CMB dominates.Comment: 10 pages, A&A in pres

    The ATESP 5 GHz radio survey. II. Physical properties of the faint radio population

    Get PDF
    One of the most debated issues about sub-mJy radio sources, which are responsible for the steepening of the 1.4 GHz source counts, is the origin of their radio emission. Particularly interesting is the possibility of combining radio spectral index information with other observational properties to assess whether the sources are triggered by star formation or nuclear activity. The aim of this work is to study the optical and near infrared properties of a complete sample of 131 radio sources with S>0.4 mJy, observed at both 1.4 and 5 GHz as part of the ATESP radio survey. We use deep multi-colour (UBVRIJK) images, mostly taken in the framework of the ESO Deep Public Survey, to optically identify and derive photometric redshifts for the ATESP radio sources. Deep optical coverage and extensive colour information are available for 3/4 of the region covered by the radio sample. Typical depths of the images are U~25, B~26, V~25.4, R~25.5, I~24.3, 19.5<K_s<20.2, J<22.2. Optical/near infrared counterparts are found for ~78% (66/85) of the radio sources in the region covered by the deep multi-colour imaging, and for 56 of these reliable estimates of the redshift and type are derived. We find that many of the sources with flat radio spectra are characterised by high radio-to-optical ratios (R>1000), typical of classical powerful radio galaxies and quasars. Flat-spectrum sources with low R values are preferentially identified with early type galaxies, where the radio emission is most probably triggered by low-luminosity active galactic nuclei. Considering both early type galaxies and quasars as sources with an active nucleus, such sources largely dominate our sample (78%). Flat-spectrum sources associated with early type galaxies are quite compact (d<10-30 kpc), suggesting core-dominated radio emission.Comment: 15 pages, 13 figures, accepted for pubblication in A&

    The B3-Vla CSS sample. III: Evn & Merlin images at 18 cm

    Full text link
    EVN and MERLIN observations at 18 cm are presented for 18 Compact Steep--spectrum radio Sources (CSSs) from the B3-VLA CSS sample. These sources were marginally resolved in previous VLA A-configuration observations at 4.9 and 8.4 GHz or had peculiar morphologies, two of them looking like core-jets. The MERLIN images basically confirm the VLA structures at 8.4 GHz while the EVN and/or the combined images reveal several additional details.Comment: 17 pages, many low resoltion figures, A&A accepted. A higher resolution gzipped postscript file can be found at http://www.ira.cnr.it/~ddallaca/h3443.ps.g

    Study of tributary inflows in Lake Iseo with a rotating physical model

    Get PDF
    The influence of Coriolis force on the currents of large lakes is well acknowledged; very few contributions, however, investigate this aspect in medium-size lakes where its relevance could be questionable. In order to study the area of influence of the two major tributary rivers in Lake Iseo, a rotating vertically distorted physical model of the northern part of this lake was prepared and used, respecting both Froude and Rossby similarity. The model has a horizontal length scale factor of 8000 and a vertical scale factor of 500 and was used both in homogeneous and in thermally stratified conditions. We explored the pattern of water circulation in front of the entrance mouth for dif- ferent hydrologic scenarios at the beginning of spring and in summer. We neglected the influence of winds. The primary purposes of the model were twofold: i) to increase our level of knowledge of the hydrodynamics of Lake Iseo by verifying the occurrence of dynamical effects related to the Earth’s rotation on the plume of the two tributaries that enter the northern part of the lake and ii) to identify the areas of the lake that can be directly influenced by the tributaries’ waters, in order to provide guidance on water quality monitoring in zones of relevant environmental and touristic value. The results of the physical model confirm the relevant role played by the Coriolis force in the northern part of the lake. Under ordinary flow conditions, the model shows a systematic deflection of the inflowing waters towards the western shore of the lake. The inflow triggers a clockwise gyre within the Lovere bay, to the West of the inflow, and a slow counter-clockwise gyre, to the East of the inflow, that returns water towards the river mouth along the eastern shore. For discharges with higher return period, when only the contribution by Oglio River is relevant, the effect of the Earth’s rotation weakens in the entrance zone and the plume has a more rectilinear pattern, whilst in the far field the current driven by the inflows keeps moving along the western shore. On the basis of these results one could expect that the north-western part of the lake between Castro and Lovere, although not aligned with the tributaries’ axes, is more sensitive to accumulation effects related to river-borne pollution. The results obtained with the physical model are critically compared with data obtained from different sources: the trajectory of a lagrangian drogue; a map of reflectivity data from the lake floor; a map of water turbidity at the intrusion depth. The findings are also confirmed by the results of a 3D numerical model of the lake

    Italian Science Case for ALMA Band 2+3

    Get PDF
    The Premiale Project "Science and Technology in Italy for the upgraded ALMA Observatory - iALMA" has the goal of strengthening the scientific, technological and industrial Italian contribution to the Atacama Large Millimeter/submillimeter Array (ALMA), the largest ground based international infrastructure for the study of the Universe in the microwave. One of the main objectives of the Science Working Group (SWG) inside iALMA, the Work Package 1, is to develop the Italian contribution to the Science Case for the ALMA Band 2 or Band 2+3 receiver. ALMA Band 2 receiver spans from ~67 GHz (bounded by an opaque line complex of ozone lines) up to 90 GHz which overlaps with the lower frequency end of ALMA Band 3. Receiver technology has advanced since the original definition of the ALMA frequency bands. It is now feasible to produce a single receiver which could cover the whole frequency range from 67 GHz to 116 GHz, encompassing Band 2 and Band 3 in a single receiver cartridge, a so called Band 2+3 system. In addition, upgrades of the ALMA system are now foreseen that should double the bandwidth to 16 GHz. The science drivers discussed below therefore also discuss the advantages of these two enhancements over the originally foreseen Band 2 system.Comment: 43 pages, 21 figure
    corecore