130 research outputs found

    Санація та реструктуризація : порівняльна характеристика

    Get PDF
    A novel device for capillary-free mounting of protein crystals is described. A controlled stream of air allows an accurate adjustment of the humidity at the crystal. The crystal is held on the tip of a micropipette. With a video system (CCD camera), the two-dimensional shadow projections of crystals can be recorded for optical analysis. Instead of the micropipette, a standard loop can also be used. Experiments and results for different crystal systems demonstrate the use of this method, also in combination with shock-freezing, to improve crystal order. Working with oxygen-free gases offers the possibility of crystal measurements under anaerobic conditions. Furthermore, the controlled application of arbitrary volatile substances with the gas stream is practicable.</jats:p

    Optimization of the All-D peptide D3 for Aβ oligomer elimination

    Get PDF
    The aggregation of amyloid-{beta} (A{beta}) is postulated to be the crucial event in Alzheimer's disease (AD). In particular, small neurotoxic A{beta} oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric A{beta}. The underlying hypothesis is that ligands bind monomeric A{beta} and stabilize these species within the various equilibria with A{beta} assemblies, leading ultimately to the elimination of A{beta} oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i) inhibit the formation of Thioflavin T-positive fibrils; (ii) bind to A{beta} monomers with micromolar affinities; (iii) eliminate A{beta} oligomers; (iv) reduce A{beta}-induced cytotoxicity; and (v) disassemble preformed A{beta} aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded A{beta} monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD

    Purification, characterization, and cloning of a bifunctional molybdoenzyme with hydratase and alcohol dehydrogenase activity

    Get PDF
    A bifunctional hydratase/alcohol dehydrogenase was isolated from the cyclohexanol degrading bacterium Alicycliphilus denitrificans DSMZ 14773. The enzyme catalyzes the addition of water to α,β-unsaturated carbonyl compounds and the subsequent alcohol oxidation. The purified enzyme showed three subunits in SDS gel, and the gene sequence revealed that this enzyme belongs to the molybdopterin binding oxidoreductase family containing molybdopterins, FAD, and iron-sulfur clusters

    Several candidate size metrics explain vital rates across multiple populations throughout a widespread species' range

    Get PDF
    Individual plant size often determines the vital rates of growth, survival and reproduction. However, size can be measured in several ways (e.g. height, biomass, leaf length). There is no consensus on the best size metric for modelling vital rates in plants. Demographic datasets are expanding in geographic extent, leading to choices about how to represent size for the same species in multiple ecological contexts. If the choice of size variable varies among locations, inter-population comparative demography increases in complexity. Here, we present a framework to perform size metric selection in large-scale demographic studies. We highlight potential pitfalls and suggest methods applicable to diverse study organisms. We assessed the performance of five different size metrics for the perennial herb Plantago lanceolata, across 55 populations on three continents within its native and non-native ranges, using the spatially replicated demographic dataset PlantPopNet. We compared the performance of each candidate size metric for four vital rates (growth, survival, flowering probability and reproductive output) using generalized linear mixed models. We ranked the candidate size metrics based on their overall performance (highest generalized R2) and homogeneity of performance across populations (lowest total magnitude of, and variance in, population-level error). While all size variables performed well for modelling vital rates, the number of leaves (modelled as a discrete variable, without transformation) was selected as the best size metric, followed by leaf length. We show how to interrogate potential trade-offs between overall explanatory power and homogeneity of predictions across populations in any organism. Synthesis. Size is an important determinant of vital rates. Using a dataset of unprecedented spatial extent, we find (a) consistent size-based models of growth, survival and reproduction across native and non-native populations of this cosmopolitan plant species and (b) that several tested size metrics perform similarly well. This is encouraging for large-scale demographic studies and for comparative projects using different size metrics, as they may be robust to this methodological difference.</p

    The effects of mutant Ras proteins on the cell signalome

    Get PDF
    The genetic alterations in cancer cells are tightly linked to signaling pathway dysregulation. Ras is a key molecule that controls several tumorigenesis-related processes, and mutations in RAS genes often lead to unbiased intensification of signaling networks that fuel cancer progression. In this article, we review recent studies that describe mutant Ras-regulated signaling routes and their cross-talk. In addition to the two main Ras-driven signaling pathways, i.e., the RAF/MEK/ERK and PI3K/AKT/mTOR pathways, we have also collected emerging data showing the importance of Ras in other signaling pathways, including the RAC/PAK, RalGDS/Ral, and PKC/PLC signaling pathways. Moreover, microRNA-regulated Ras-associated signaling pathways are also discussed to highlight the importance of Ras regulation in cancer. Finally, emerging data show that the signal alterations in specific cell types, such as cancer stem cells, could promote cancer development. Therefore, we also cover the up-to-date findings related to Ras-regulated signal transduction in cancer stem cells. © 2020, The Author(s)

    Several candidate size metrics explain vital rates across multiple populations throughout a widespread species' range

    Get PDF
    1. Individual plant size often determines the vital rates of growth, survival and reproduction. However, size can be measured in several ways (e.g. height, biomass, leaf length). There is no consensus on the best size metric for modelling vital rates in plants. 2. Demographic datasets are expanding in geographic extent, leading to choices about how to represent size for the same species in multiple ecological contexts. If the choice of size variable varies among locations, inter-population comparative demography increases in complexity. 3. Here, we present a framework to perform size metric selection in large-scale demographic studies. We highlight potential pitfalls and suggest methods applicable to diverse study organisms. 4. We assessed the performance of five different size metrics for the perennial herb Plantago lanceolata, across 55 populations on three continents within its native and non-native ranges, using the spatially replicated demographic dataset PlantPopNet. We compared the performance of each candidate size metric for four vital rates (growth, survival, flowering probability and reproductive output) using generalized linear mixed models. We ranked the candidate size metrics based on their overall performance (highest generalized R2) and homogeneity of performance across populations (lowest total magnitude of, and variance in, population-level error). 5. While all size variables performed well for modelling vital rates, the number of leaves (modelled as a discrete variable, without transformation) was selected as the best size metric, followed by leaf length. We show how to interrogate potential trade-offs between overall explanatory power and homogeneity of predictions across populations in any organism. 6. Synthesis. Size is an important determinant of vital rates. Using a dataset of unprecedented spatial extent, we find (a) consistent size-based models of growth, survival and reproduction across native and non-native populations of this cosmopolitan plant species and (b) that several tested size metrics perform similarly well. This is encouraging for large-scale demographic studies and for comparative projects using different size metrics, as they may be robust to this methodological difference

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention

    CO DEHYDROGENASE FROM OLIGOTROPHA CARBOXIDOVORANS

    No full text
    corecore