638 research outputs found

    Millimeter and Submillimeter Survey of the R Corona Australis Region

    Full text link
    Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12m telescope and the Arizona Radio Observatory 10m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of Carbon Monoxide, HCO+^+ and 870\micron continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01pc over an area of 0.16 pc2^2, with velocity resolution finer than 1 km/s. Mass estimates of the protostar driving the mm-wave emission derived from HCO+^+, dust continuum emission and kinematic techniques point to a young, deeply embedded protostar of \sim0.5-0.75 M_\odot, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 M_\odot of molecular gas with \sim0.5 L_\odot of mechanical luminosity. HCO+^+ lines show the kinematic signature of infall motions as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation and outflow towards this young object.Comment: 29 pages, 9 figures. Accepted for publication in the Astrophysical Journa

    Star Formation in the Northern Cloud Complex of NGC 2264

    Full text link
    We have made continuum and spectral line observations of several outflow sources in the Mon OB1 dark cloud (NGC 2264) using the Heinrich Hertz Telescope (HHT) and ARO 12m millimeter-wave telescope. This study explores the kinematics and outflow energetics of the young stellar systems observed and assesses the impact star formation is having on the surrounding cloud environment. Our data set incorporates 12CO(3-2), 13CO(3-2), and 12CO(1-0) observations of outflows associated with the sources IRAS 06382+1017 and IRAS 06381+1039, known as IRAS 25 and 27, respectively, in the northern cloud complex. Complementary 870 micron continuum maps were made with the HHT 19 channel bolometer array. Our results indicate that there is a weak (approximately less than 0.5%) coupling between outflow kinetic energy and turbulent energy of the cloud. An analysis of the energy balance in the IRAS 25 and 27 cores suggests they are maintaining their dynamical integrity except where outflowing material directly interacts with the core, such as along the outflow axes.Comment: 28 pages including 6 figures, to be published in ApJ 01 July 2006, v645, 1 issu

    Radioisotopic purity and imaging properties of cyclotron-produced 99mTc using direct 100Mo(p,2n) reaction

    Get PDF
    Evaluation of the radioisotopic purity of technetium-99m (99mTc) produced in GBq amounts by proton bombardment of enriched molibdenum-100 (100Mo) metallic targets at low proton energies (i.e. within 15\u201320 MeV) is conducted. This energy range was chosen since it is easily achievable by many conventional medical cyclotrons already available in the nuclear medicine departments of hospitals. The main motivation for such a study is in the framework of the research activities at the international level that have been conducted over the last few years to develop alternative production routes for the most widespread radioisotope used in medical imaging. The analysis of technetium isotopes and isomeric states (9xTc) present in the pertechnetate saline Na99mTcO4 solutions, obtained after the extraction/purification procedure, reveals radionuclidic purity levels basically in compliance with the limits recently issued by European Pharmacopoeia 9.3 (2018 Sodium pertechnetate (99mTc) injection 4801\u20133). Moreover, the impact of 9xTc contaminant nuclides on the final image quality is thoroughly evaluated, analyzing the emitted high-energy gamma rays and their influence on the image quality. The spatial resolution of images from cyclotron-produced 99mTc acquired with a mini-gamma camera was determined and compared with that obtained using technetium-99m solutions eluted from standard 99Mo/99mTc generators. The effect of the increased image background contribution due to Compton-scattered higher-energy gamma rays (E \u3b3 \u2009\u2009>\u2009\u2009200\u2009keV), which could cause image-contrast deterioration, was also studied. It is concluded that, due to the high radionuclidic purity of cyclotron-produced 99mTc using 100Mo(p,2n)99mTc reaction at a proton beam energy in the range 15.7\u201319.4 MeV, the resulting image properties are well comparable with those from the generator-eluted 99mTc

    X-ray Emission from the FU Orionis Star V1735 Cygni

    Full text link
    The variable star V1735 Cyg (= Elias 1-12) lies in the IC 5146 dark cloud and is a member of the class of FU Orionis objects whose dramatic optical brightenings are thought to be linked to episodic accretion. We report the first X-ray detections of V1735 Cyg and a deeply-embedded class I protostar lying 24 arcsecs to its northeast. X-ray spectra obtained with EPIC on XMM-Newton reveal very high-temperature plasma (kT > 5 keV) in both objects, but no large flares. Such hard X-ray emission is not anticipated from accretion shocks and is a signature of magnetic processes. We place these new results into the context of what is presently known about the X-ray properties of FU Orionis stars and other accreting young stellar objects.Comment: 25 pages, 6 figure

    On modified simple reacting spheres kinetic model for chemically reactive gases

    Get PDF
    Versão dos autores para esta publicação.We consider the modiffed simple reacting spheres (MSRS) kinetic model that, in addition to the conservation of energy and momentum, also preserves the angular momentum in the collisional processes. In contrast to the line-of-center models or chemical reactive models considered in [1], in the MSRS (SRS) kinetic models, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justi ed. In the MSRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard spheres-like. We consider a four component mixture A, B, A*, B*, in which the chemical reactions are of the type A + B = A* + B*, with A* and B* being distinct species from A and B. We provide fundamental physical and mathematical properties of the MSRS model, concerning the consistency of the model, the entropy inequality for the reactive system, the characterization of the equilibrium solutions, the macroscopic setting of the model and the spatially homogeneous evolution. Moreover, we show that the MSRS kinetic model reduces to the previously considered SRS model (e.g., [2], [3]) if the reduced masses of the reacting pairs are the same before and after collisions, and state in the Appendix the more important properties of the SRS system.Fundação para a Ciência e a Tecnologi

    The Spitzer Survey of Interstellar Clouds in the Gould Belt. III. A Multi-Wavelength View of Corona Australis

    Full text link
    We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg^2 field including the Corona Australis (CrA) star-forming region. At a distance of 130 pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Using the Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include sources in the well-studied Coronet cluster as well as distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs retrieved from the literature are also added to the list, and a total of 116 candidate YSOs in CrA are compiled. Based on these YSO candidates, the star formation rate is computed to be 12 M_o Myr^-1, similar to that of the Lupus clouds. A clustering analysis was also performed, finding that the main cluster core, consisting of 68 members, is elongated (having an aspect ratio of 2.36), with a circular radius of 0.59 pc and mean surface density of 150 pc^-2. In addition, we analyze outflows and jets in CrA by means of new CO and H_2 data. We present 1.3 mm interferometric continuum observations made with the Submillimeter Array (SMA) covering R CrA, IRS 5, IRS 7, and IRAS 18595-3712 (IRAS 32). We also present multi-epoch H_2 maps and detect jets and outflows, study their proper motions, and identify exciting sources. The Spitzer and ISAAC/VLT observations of IRAS 32 show a bipolar precessing jet, which drives a CO (2-1) outflow detected in the SMA observations. There is also clear evidence for a parsec-scale precessing outflow, E-W oriented, and originating in the SMA 2 region, likely driven by SMA 2 or IRS 7A.Comment: Accepted for publication in ApJS. 112 pages, 42 figures (quality reduced), 13 tables. Full resolution version can be found at http://www.cfa.harvard.edu/~dpeterson/CrA/CrA_highres.pd

    Probing ISM Structure in Trumpler 14 & Carina I Using The Stratospheric Terahertz Observatory 2

    Get PDF
    We present observations of the Trumpler 14/Carina I region carried out using the Stratospheric Terahertz Observatory 2 (STO2). The Trumpler 14/Carina I region is in the west part of the Carina Nebula Complex, which is one of the most extreme star-forming regions in the Milky Way. We observed Trumpler 14/Carina I in the 158 μ\mum transition of [C\,{\sc ii}] with a spatial resolution of 48'' and a velocity resolution of 0.17 km s1^{-1}. The observations cover a 0.25^\circ by 0.28^\circ area with central position {\it l} = 297.34^\circ, {\it b} = -0.60^\circ. The kinematics show that bright [C\,{\sc ii}] structures are spatially and spectrally correlated with the surfaces of CO clouds, tracing the photodissociation region and ionization front of each molecular cloud. Along 7 lines of sight that traverse Tr 14 into the dark ridge to the southwest, we find that the [C\,{\sc ii}] luminosity from the HII region is 3.7 times that from the PDR. In same los we find in the PDRs an average ratio of 1:4.1:5.6 for the mass in atomic gas:dark-CO gas: molecular gas traced by CO. Comparing multiple gas tracers including HI 21cm, [C\,{\sc ii}], CO, and radio recombination lines, we find that the HII regions of the Carina Nebula Complex are well-described as HII regions with one-side freely expanding towards us, consistent with the champagne model of ionized gas evolution. The dispersal of the GMC in this region is dominated by EUV photoevaporation; the dispersal timescale is 20-30 Myr.Comment: ApJ accepte

    Glioma invasion and its interplay with the nervous tissue: a multiscale model

    Get PDF
    A multiscale mathematical model for glioma cell migration and proliferation is proposed, taking into account a possible therapeutic approach. Starting with the description of processes taking place on the subcellular level, the equation for the mesoscopic level is formulated and, thus, the macroscopic model is derived, using a parabolic limit and the Hilbert expansions in the moment system. After the model set up and the study of the well-posedness of this macroscopic setting, we investigate the functions involved in the equations that highlight the role of the fibers in the tumor dynamics. In particular, we focus on the fiber density function, with the aim of comparing different possible choices present in literature and understanding which approach could better describe the actual fiber density and orientation. Finally some numerical simulations, based on real data, show the role of each modelled process in the evolution of the solution

    District Heating Deployment and Energy-Saving Measures to Decarbonise the Building Stock in 100% Renewable Energy Systems

    Get PDF
    Achieving a zero-emission building heating sector requires numerous strategies and detailed energy planning, in order to identify the optimal decarbonisation pathway. This work aims to assess the impact of district heating expansion and the implementation of energy-saving measures on the decarbonisation of the Italian building stock by 2050, analysing their combined impact, reciprocal effects, and technical-economic implications on the entire national energy system. The scenarios have been implemented and simulated with the H2RES software, a long-term energy planning optimisation model, built for the Italian national energy system. Results indicate that it is possible to decarbonise the heating system in an efficient and cost-effective manner by the year 2040. Heat pumps represent the optimal technology at both centralised and decentralised levels. District heating expansion is a priority for the decarbonisation of the building stock, allowing us to reduce costs, exploit thermal storage systems and provide system flexibility. In the best scenario, 40% of the Italian heat demand can be supplied by fourth-generation district heating. Energy-saving measures can reduce heat demand and primary energy but at higher annual costs and with a significant increase in investment. The combined simulation of the strategies within an optimisation model of the entire energy system enables the accurate assessment of the real impact of the various measures, considering their reciprocal effects and technical-economic implications

    Assessment of the Optimal Energy Generation and Storage Systems to Feed a Districting Heating Network

    Get PDF
    Employing sustainable energy systems is a must fact of the current years. Urban districts can lead the decarbonization process of cities to allow the development of decentralization energy systems such as district heating. On the other hand, the exergy analysis combined with energy evaluation can be a suitable way to investigate the efficiency and flexibility of an energy system. In this framework, this study investigates the optimal energy and storage systems to feed a district heating network. Four types of energy systems were analyzed, such as boilers, cogeneration plants, solar systems and the combination of them. The size of the thermal energy storage of the network is investigated in terms of volume and temperature. In parallel, the exergy efficiency of all the systems was calculated. The optimal heating system configuration to feed the studied district heating is the cogeneration plant with solar collectors, according to both the temperature trend fluctuation and exergy efficiency of the system. Moreover, the employment of thermal energy storage is crucial to face the renewable energy source’s variability. As a further investigation, additional exergy indicators can be studied to underline the performances of such an decentralized energy system to increase the quality of the built environment
    corecore