54,982 research outputs found
Energy-based Structure Prediction for d(Al70Co20Ni10)
We use energy minimization principles to predict the structure of a decagonal
quasicrystal - d(AlCoNi) - in the Cobalt-rich phase. Monte Carlo methods are
then used to explore configurations while relaxation and molecular dynamics are
used to obtain a more realistic structure once a low energy configuration has
been found. We find five-fold symmetric decagons 12.8 A in diameter as the
characteristic formation of this composition, along with smaller
pseudo-five-fold symmetric clusters filling the spaces between the decagons. We
use our method to make comparisons with a recent experimental approximant
structure model from Sugiyama et al (2002).Comment: 10pp, 2 figure
Digging deep the oil world: corporate liability and environmental justice strategies
The impacts provoked by the expanding oil industry encompass environmental destruction, health impacts and violations of human rights. The increasing contamination jeopardizes safe conditions of life and destroys means of livelihood of vulnerable communities and of those relying on healthy ecosystems. Local communities, feeling that they are simply sacrificed to the oil industry, see themselves involved in social conflict. They are experiencing forms of environmental discrimination and might even face criminalisation of the protest when they stand up to defend their rights promoting the chilly effect on others who need and want to defend themselves and the environment. In fact, the number of lawsuits demanding justice for environmental, social, economical and cultural damages provoked by oil companies are increasing as well as their media visibility. Yet most outcomes are not satisfactory in tackling impacted communities claims for justice. This paper describes the most recent trends regarding oil corporations’ responsibilities and use of procedural justice by civil society through the review of emblematic legal cases
Nonlinear alternating current responses of graded materials
When a composite of nonlinear particles suspended in a host medium is
subjected to a sinusoidal electric field, the electrical response in the
composite will generally consist of alternating current (AC) fields at
frequencies of higher-order harmonics. The situation becomes more interesting
when the suspended particles are graded, with a spatial variation in the
dielectric properties. The local electric field inside the graded particles can
be calculated by the differential effective dipole approximation, which agrees
very well with a first-principles approach. In this work, a nonlinear
differential effective dipole approximation and a perturbation expansion method
have been employed to investigate the effect of gradation on the nonlinear AC
responses of these composites. The results showed that the fundamental and
third-harmonic AC responses are sensitive to the dielectric-constant and/or
nonlinear-susceptibility gradation profiles within the particles. Thus, by
measuring the AC responses of the graded composites, it is possible to perform
a real-time monitoring of the fabrication process of the gradation profiles
within the graded particles.Comment: 18 pages, 4 figure
Evaluation of a series hybird thrust bearing at DN values to three million. 1: Analysis and design
The analysis and design are presented of a hybrid bearing consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid film bearing fitting an envelope with an outer radius of 86.4 mm (3.4 in.) and an inner radius of 71 mm (2.8 in.). The bearing analysis, combined with available torque data on ball bearings, indicates that an effective speed split between the ball and fluid-film bearings of 50 percent may be expected during operation at 20,000 rpm and under an axial load of 17,800 newtons (4000 lbs.). This speed split can result in a ten-fold increase in the life of the ball bearing when compared to a simple ball bearing system operating under similar conditions
Gearbox fault diagnosis under different operating conditions based on time synchronous average and ensemble empirical mode decomposition
In this paper, a new method is proposed by combining ensemble empirical mode decomposition (EEMD) with order tracking techniques to analyse the vibration signals from a two stage helical gearbox. The method improves EEMD results in that it overcomes the potential deficiencies and achieves better order spectrum representation for fault diagnosis. Based on the analysis, a diagnostic feature is designed based on the order spectra of extracted IFMs for detection and separation of gearbox faults. Experimental results show this feature is sensitive to different fault severities and robust to the influences from operating conditions and remote sensor locations
Acoustic based safety emergency vehicle detection for intelligent transport systems
A system has been investigated for the detection of incoming direction of an emergency vehicle. Acoustic detection methods based on a cross microphone array have been implemented. It is shown that source detection based on time delay estimation outperforms sound intensity techniques, although both techniques perform well for the application. The relaying of information to the driver as a warning signal has been investigated through the use of ambisonic technology and a 4 speaker array which is ubiquitous in most modern vehicles. Simulations show that accurate warning information may be relayed to the driver and afford correct action
- …
