969 research outputs found
Quantum Hall effect in exfoliated graphene affected by charged impurities: metrological measurements
Metrological investigations of the quantum Hall effect (QHE) completed by
transport measurements at low magnetic field are carried out in
a-few--wide Hall bars made of monolayer (ML) or bilayer (BL)
exfoliated graphene transferred on substrate. From the
charge carrier density dependence of the conductivity and from the measurement
of the quantum corrections at low magnetic field, we deduce that transport
properties in these devices are mainly governed by the Coulomb interaction of
carriers with a large concentration of charged impurities. In the QHE regime,
at high magnetic field and low temperature (), the Hall
resistance is measured by comparison with a GaAs based quantum resistance
standard using a cryogenic current comparator. In the low dissipation limit, it
is found quantized within 5 parts in (one standard deviation, ) at the expected rational fractions of the von Klitzing constant,
respectively and in the ML and BL
devices. These results constitute the most accurate QHE quantization tests to
date in monolayer and bilayer exfoliated graphene. It turns out that a main
limitation to the quantization accuracy, which is found well above the
accuracy usually achieved in GaAs, is the low value of the QHE
breakdown current being no more than . The current dependence
of the longitudinal conductivity investigated in the BL Hall bar shows that
dissipation occurs through quasi-elastic inter-Landau level scattering,
assisted by large local electric fields. We propose that charged impurities are
responsible for an enhancement of such inter-Landau level transition rate and
cause small breakdown currents.Comment: 14 pages, 9 figure
CTF3: Design of Driving Beam Combiner Ring
In CTF3 the beam compression of the driving beam structure between the main linac and the decelerating section is obtained with a delay loop and a combiner ring which increase the pulse current by a factor 10. The design of the combiner ring is presented. Tunable isochronicity condition, corrected up to second order, should assure preservation of the correlation in the longitudinal phase space during the compression. Path-length tuning devices are included in the combiner ring layout to compensate for orbit variations
A new method of RF power generation for two-beam linear colliders
In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency (~1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulti ng power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive is very flexible and can be used to accelerate beams for lin ear colliders over the entire frequency and energy range
Studies of New Vector Resonances at the CLIC Multi-TeV e+e- Collider
Several models predict the existence of new vector resonances in the
multi-TeV region, which can be produced in high energy e+e- collisions in the
s-channel. In this paper we review the existing limits on the masses of these
resonances from LEP/SLC and TEVATRON data and from atomic parity violation in
some specific models. We study the potential of a multi-TeV e+e- collider, such
as CLIC, for the determination of their properties and nature.Comment: 17 pages, 16 EPS figures, uses JHEP3.cl
The postcranial anatomy of Brasilodon quadrangularis and the acquisition of mammaliaform traits among non-mammaliaform cynodonts
Brasilodon quadrangularis (Cynodontia, Probainognathia) is an iconic non-mammaliaform cynodont from the Late Triassic of Brazil (Riograndia Assemblage Zone, Candelária Sequence), being considered as the sister taxon of Mammaliaformes. Although its phylogenetic position is very important, several aspects of its postcranial anatomy remain unclear or unstudied. Here, we present a detailed description of the postcranial elements referred to Brasilodon, including previously mentioned specimens and new ones, which add relevant information about its postcranial morphology and provide a new insight into the anatomical transition between advanced non-mammaliaform cynodonts and early mammaliaforms. Functional and ecological implications are also investigated, based on the postcranial morphology and muscular reconstructions. The postcranium of Brasilodon differs from most non-mammaliaform cynodonts and presents similarities with tritylodontids, early mammaliaforms and extant therians, such as a ventrally oriented scapular glenoid facet, a distinct and ossified greater humeral tubercle, lack of ectepicondylar foramen, olecranon process, hemispherical humeral and femoral heads and a prominent intertrochanteric crest. The humeral torsion, the length of the deltopectoral crest, the large bicipital groove and the well-developed lesser tubercle, indicate that the forelimb of Brasilodon was hold in a semi-sprawling position, with well-developed adductor muscles to maintain the body off the ground. The short femoral neck and the strong medial projection of the femoral head indicate the femur was held in a more erect posture than in basal non-mammaliaform cynodonts. The anterodorsally projected iliac blade with reduced postacetabular process, reduction of the anterior part of the pubis, medially located lesser trochanter indicate a basically mammalian pattern of pelvic musculature, able to swing the femur in a nearly parasagittal plane.Fil: Guignard, Morgan L.. Universidade Federal do Rio Grande do Sul; BrasilFil: Martinelli, Agustín Guillermo. Universidade Federal do Rio Grande do Sul; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Soares, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina. Universidade Federal do Rio Grande do Sul; Brasi
CLIC: a Two-Beam Multi-TeV Linear Collider
The CLIC study of a high-energy (0.5 - 5 TeV), high-luminosity (1034 - 1035 cm-2 sec-1) e+e- linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structures operating at high accelerating fields (150 MV/m) significantly reduces the length and, in consequence, the cost of the linac. Using parameters derived from general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost-effective and efficient drive beam generation scheme for RF power production by the so-called "Two-Beam Acceleration" method is described. It uses a thermionic gun and a fully-loaded normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches, and RF multiplication by funnelling in compressor rings to produce the desired bunch structure. Recent 30 GHz hardware developments and CLIC Test Facility (CTF) results are described
- …
